POLISHING
YOUR APPLE

HERBERT M. HONIG

POLISHING 8
YOUR APPLE’ 3;

{

p
The fun and easy-to-follow practical manual packed with
useful information for the novice programmer. ‘

® Begins with explaining the most elementary form ,z
of computer programs and progresses to more 1y
detailed programs by building upon this basic
knowledge in a clear, logical way.

* Contains a concise assembly of all the procedures
needed for writing, disk filing, and printing pro-
grams for an Apple® computer.

® Explains how to create disk files and how to operate 4
various brands of printers. ‘

® Provides a quick guide to getting into useful pro-
gramming of the Apple® computer for those who
want to write their own programs for business or
personal applications with a minimum amount of
learning time.

e Utilizes the mteractnve capability of the computer
in the example programs.

® Provides a program to list and alphabetize up to 250
names, addresses, and phone numbers.

A valuable reference for every Apple® user, from new
microcomputing students to experienced programmers.

HOWARD W. SAMS & CO., INC.
4300 West 62nd Street, indianapolis, Indiana 46268 USA

$4.95/22026 ISBN: 0-672-22026-1

- Polishing
Your Apple®

Herb Honig started swimming against the tide when he left col-
lege in 1946 to manufacture custom-built high-fidelity systems.
During that time, no mass market for what can now be called
“‘one-eared stereo” existed. Several articles published in Radio
News and Audio Engineering magazines (they have other names
now) drew Herb into technical writing. After over 15 years in that
field he set up his own quick-printing shop that he operated for 12
years. He is now working exclusively in technical writing, manag-
ing the publications department for a leading manufacturer of
aircraft instruments.

Continuing his early penchant for exploring technical frontiers,
Herb bought an Apple Il computer and (despite being well past
50) started carving out a whole new career. He earned enough to
pay for the computer by supplying price lists to quick printers, and
he used the Apple word processor to expand his writing horizons.
He also wrote The Money Tool program for controlling personal
finances that is being nationally distributed by Advanced Operat-
ing Systems, a division of Howard W. Sams & Co., Inc.

Polishing
Your Apple®

by

Herbert M. Honig

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1980 by Herb Honig and 1982 by
Howard W. Sams & Co., Inc. Indianapolis, IN 46268

FIRST EDITION
FIRST PRINTING—1982

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the publisher.
No patent liability is assumed with respect to the use of the information con-
tained herein. While every precaution has been taken in the preparation of this
book, the publisher assumes no responsibility for errors or omissions. Neither
is any liability assumed for damages resulting from the use of the information
contained herein.

International Standard Book Number: 0-672-22026-1
Library of Congress Catalog Card Number: 82-61967

Edited by: Arlet Pryor

Printed in the United States of America.

Contents

CHAPTER 1
The BasiCs o o e e e e e e e e e e 9

1-1 Counting Using Variables—1-2 Counting Using FOR-NEXT
Loops—1-3 Using the Apple for Direct Calculations—1-4 Saving
Programs on Disk—1-5 Programming With Variables—1-6 Getting
Detailed Printouts and Clearing the Screen—1-7 Condensing
Variable Data Entries—1-8 Using the INPUT Statement and Saving
Programs—1-9 Interactive Programming With Strings—1-10 Con-
clusion

CHAPTER 2
Editing and Utility Routines 23

2-1 Moving the Cursor to Make Corrections—2-2 Adding Words in
the Middle of a Statement—2-3 Changing/Deleting Line Num-
bers—2-4 Using the Disk Catalog—2-5 Locking Files—2-6 Write
Protecting a Disk—2-7 Recalling Files—2-8 Deleting/Changing
File Names—2-9 Finding Hidden Control Characters—2-10 Work-
ing With ASCII Codes—2-11 Using Printer Commands—2-12 Spe-
cial Commands for the Centronix 737 Printer—2-13 Special Com-
mands for the IDS Paper Tiger—2-14 Special Commands for the
Epson MX-80

CHAPTER 3
Some Simple, Practical Programs 37

3-1 Printing Tables—3-2 Rounding—3-3 Renumbering and List-
ing—3-4 Storing Data in Memory With Subscripted Variables—3-5
Using the Conditional Statement for Greater Flexibility—3-6 Using
Multiple Computations—3-7 Using the Printer for Multiple Reports

CHAPTER 4
Data Storage and Retrieval T O P R 49

4-1 Program Description—4-2 General Use Programming Tool—4-
3 General Instructions—4-4 Preliminary Program Functions—4-5

6

Existing Data—4-9 Printing Out Data—4-10 Data Entry for all One
Street—4-11 Sort—4-12 General Discussion—4-13 Testing the
Last Names for Precedence—4-14 Putting Names in Order

CHAPTER 5
Writing Your Own Programs 71

5-1 Getting Started—5-2 Debugging—5-3 Trace—5-4 Print/
Pause—5-5 Conclusion

Preface

This book is intended as a primer for users of the Apple®* com-
puter who want to write their own programs for business or per-
sonal applications with a minimum amount of learning time. It is
packed with useful techniques that may be new to even expe-
rienced Apple computer users.

My experience learning to program the Apple computer showed
me how frustrating it can be to get hung up on some small detail
just because the needed answer was not readily available.

Programming is not really difficult for those who are disciplined in
any other area of problem solving, provided one can learn how to
communicate with the computer in its own language. The Apple Il
Rfi#s computer uses the Applesoft BASIC language, which is a
dialect not too different from other BASIC languages. Small differ-
ences, however, make it unnecessarily difficult to use texts written
for general use.

| have tried to address these differences by putting in this one
book the essential knowledge for programming in Applesoft
BASIC, using one disk drive and either the Centronix 737 Printer,
the IDS 440 Paper Tiger Printer, the Epson MX-80, or other print-
ers in the same families using the same commands. | hope you
will agree that this arrangement allows you to cut your initial
learning time in half. Once you have read, copied, and used all the
programs in this book, you will be much better prepared to
expand your knowledge using the other available Apple computer
books.

This book begins with a very simple three-line program and pro-
gresses to a final complex program with disk data storage, sort-
ing, and printing of either a single data entry or a whole list. The
programs are all explained step by step so that your knowledge

*Apple is a registered trademark of Apple Computer, Inc.

builds in a gradual, logical way. The programs have practical util-
ity, and each can be modified to meet your particular needs.

After you finish studying this book, you will be much better pre-
pared to understand the official Apple computer books, and other
BASIC language books.

HERB HONIG

Note
Throughout this book, reversed letters (e.g. [TERM) desig-
nate keystrokes. That is, when this designation is used, it
means the reversed letters are a single keystroke on the key-
board (or keys that are pressed simultaneously to produce a
desired result) instead of being input as individual charac-
ters.

The Basics

Chapter 1

To start, | am assuming that you know how to set up and turn on
your computer and operate the keyboard, either because the
salesperson showed you how when you bought it, or you read the
first chapter of The Applesoft Tutorial, published by Apple Com-
puter, Inc. Now, let us get to some simple programming tech-
niques that you can consider either as a review or as a good
starting point.

BASIC programs are constructed from sequential statements (or
steps) identified and ordered by numbered lines. Good program-
ming practice uses line numbers in increments of 5, 10, or more to
allow room for insertion of additional steps as the program devel-
ops or needs revision. Proper usage of line numbers is illustrated
in the following section with a short, practical program.

1-1 COUNTING USING VARIABLES

The following program called COUNT 1 has only three steps.
Type NEW and hit the key to clear any previous program
from the Random Access Memory (RAM) of the Apple. Always
clear the RAM before starting any new program. Type line 10 of
COUNT 1 and then hit to enter it in the RAM. Do the
same for lines 20 and 30. Type RUN and hit JEE0EE- This starts
the program counting.

COUNT 1:

10 1=1+1
20 PRINT |
30 GOTO 10

10

L;":\','i; ~ o sface Y 2N /J: ﬁ‘_!;‘~f:' {4 YA
Count 1 will count from 1 up, until it reaches the highest number
the Apple computer can handle, or until you stop the count by
hitting the control key at the same time as you press the [§J
key or by pressing the key.* Let us take a moment to look
at how this program works. In step 10 we introduce the single
algebraic variable, |. We use an expression that instructs the com-
puter to add 1 to | every time it passes through step 10. In step 20
the PRINT command is used to report the value of I, by printing it
on the screen. Step 30 sends the computer back to step 10, com-
pleting a loop that will keep adding 1 to | infinitely.

Before we change the program, to break the infinite loop, let us
make sure that you understand what happens inside the com-
puter to make it count. For every variable, such as |, the computer
assigns a memory location to store the value of the variable. The
initial command RUN clears all memory locations to 0 so that on
the first pass step 10 assigns a value of 1 to location | and then
adds to the value by an additional 1 for each loop of the program.
Thus, the value stored in memory location | advances in incre-
ments of 1 until stopped. If you have not done so already, press
the key at the same time as you press thel[@key. (This time
you do not need to press the [[BEUN-)

We can break the loop by inserting an appropriate conditional
statement, as in Count 2. Put COUNT 1 back on the screen by
typing LIST and hitting RETURN. Note: Steps changed or added
are designated by a bullet, as shown in step 25 of COUNT 2.

COUNT 2:

10 I =1+1
20 PRINT I

25 |IF | = 10 THEN END
30 GOTO 10

Type only step 25, in the same way as the previous steps. When
you type LIST and [TZLM. you will see the revised program with
all the steps in proper order. This is a feature of BASIC that helps
make program development so easy. New program statements
may be added or moved around at will.

{,}{2 vg\e 2 Viado

= i \ R

J)

~The-Apple-has-a-switch-hidden-under-the-keyboard that can be set to-prevent
{33 from-working_unless the [Tl key-is-pressed simultaneousiy. This-is-to
make=accidental resets impossible..

11

* Note: Until you gain familiarity with your Apple computer you will
probably make mistakes. Many of these mistakes will create error
messages that tell you what to check. The Applesoft Tutorial
explains the meaning of the error messages in Appendix E, page
143. If all else fails, LIST your program and check it carefully
against the ones listed in the book.

Run COUNT 2. Each time you run it, numbers 1 to 10 appear
vertically at the edge of the screen. As each new set of numbers
appears, it causes the previous set to move up and off the top
edge of the screen. In more complex programs the screen can get
cluttered with data very quickly, so you will want to know how to
clear the screen for new data. Add step 5, as in COUNT 3.

COUNT 3:

«5 HOME
10 I =1+ 1
20 PRINT I
25 IF1 = 10 THEN END
30 GOTO 10

Run the revised program, and a new set of numbers appears at
the top of the cleared screen each time. The HOME command
clears the screen and returns the cursor to the top left. Vertical
display of numbers is not usually desirable, so let us look at some
techniques for other formats. Retype line 20 with a comma after
the I. (When you type the new line 20 the old one will be replaced.)
Run the program. This technique is called comma spacing. The
comma cancels the line feed to stop the vertical spacing and
places ten blank spaces between each printout. This application
is often useful in setting up tables.

Change the comma to a semicolon and run the program again.
The semicolon also cancels the line feed, but it does not add any
space between the numbers. All the numbers form a tight horizon-
tal group.

1-2 COUNTING USING FOR-NEXT LOOPS

COUNT 4 illustrates another way to count. The FOR-NEXT loop is
used to do the same thing as the | + 1 counter but in a different

12

way. Line 10 defines the range of values that the variable | will
take. Line 20 prints |, using the double-quote and semicolon to
space the numbers along one line, and line 30 keeps looping back
to line 10 through all of the defined values of I. After the highest
value of | has been reached, the program breaks out of the loop
and line 40 ends the program.

COUNT 4:

5 HOME

10 FORI| =1TO 10
20 PRINT I" "

30 NEXT I

40 END

The two methods of counting have different uses that often over-
lap. In many cases either method works equally well. Sample
applications are illustrated throughout this book.

1-3 USING THE APPLE FOR DIRECT CALCULATIONS ——

There are occasions when it is useful to make calculations
directly from the keyboard to the screen, without using numbered
program statements. To do this, type PRINT and then enter your
arithmetic operation. Try this: PRINT 2 + 4 and then hit [T
Try a few other calculations. Use the asterisk («) for multiplication
and the slash (/) for division. For complex problems use the for-
mat PRINT (2+7) = (6/5). Do not use the letter X, for multiplica-
tion; it is used as a variable. When the screen gets cluttered use
the HOME command.

Using the screen for direct calculations provides immediate execu-
tion of the commands, as opposed to deferred execution by use of
numbered line statements. This technique can be used advanta-
geously in many ways; for example, it is useful to try out commands
that you may not be sure will work, it can be used to turn on the
printer and make lists, and it can put the Apple computer into special
modes of operation, which will be described later.

There are two additional ways to clear the screen, and both do the
same thing as the HOME command. With the screen cluttered
with data, enter CALL -936. (This command is a carry-over from

13

Integer BASIC, another BASIC language available on some Apple
computers. The HOME command is not available in Integer
BASIC, so CALL -936 offers the advantage of providing the identi-
cal function for programs written in either language.) Now LIST
more data, hit the escape key and then, while pressing the
shift key, hit the key (capital P). This last method is useful in
the immediate execution mode but not easily applied to deferred
execution. Note that many operations the Apple computer accom-
plishes may use different commands to do the same task. The
choice of command is yours and should be based on what is
easiest to execute, which generally means what requires the few-
est number of keystrokes.

There is an alternate way to execute the PRINT command, using
only one keystroke. Instead of typing PRINT 2 + 4, type 7 2 + 4.
Either command performs the same task, and using the question
mark in a numbered line statement whenever PRINT is needed
will save you many keystrokes. Try it in immediate execution and
again on the next program and note that when you LIST the pro-
gram, the ? is automatically translated to PRINT instead of ?.

1-4 SAVING PROGRAMS ON DISK

Before we go further, prepare to save your programs on disk. The
use of the disk drive is described on page 5 of The Applesoft
Tutorial, which also references page 5 of the DOS Manual (either
version 3.2 or 3.3) published by Apple Computer, Inc. Initialize a
blank diskette, as described on page 13 of the DOS Manual before
continuing with the following programs.

1-5 PROGRAMMING WITH VARIABLES

The next program, called MPG 1, illustrates an elementary pro-
gram with several steps and several variables contributing to a
single answer. We will build on this program to eventually pro-
duce a professional result. Type NEW, hit the key, and
then type the program exactly as shown:

0 REM MPG 1
10 SM = 15010: FM = 15315: G = 12.3
20 MT = FM — SM

14

30 MPG = MT / G
40 PRINT MPG
50 END

After you have checked your result against the printed sample,
RUN the program.

Line 0 introduces the remark (REM) statement, which is a useful
way to add reminders in the body of a program. A REM has no
effect on the program and only shows up when you LIST the pro-
gram. The REM statement is used to label the program, MPG 1.
Line 10 establishes three variables, SM, FM, and G, and assigns
values to each variable. Applesoft BASIC (the language of your
Apple computer) can use variables that are either one or two letters
in length. The advantage of two letters is having many more than 26
combinations, but also using the variable as a mnemonic (memory
prompter) as shown in the MPG 1 program. SM, for example,
stands for starting miles, FM is finishing miles, and G is gallons.
More than two letters can be used, even making word names, but
the Apple recognizes only the first two letters of any variable. Thus
AUTO and AUDIO form the same variable (AU). Line 20 provides a
formula for computing miles traveled (MT), and line 30 computes
miles per gallon. Line 40 tells the Apple computer to print the
answer (on the screen) and line 50 ends the program, clearing all
variables to 0. Each time this program is run, you will get the same
answer from the same variables. LIST the program and retype line
10 with new variables to get new answers as often as you desire.

Another very important new concept has been introduced in line
10. Note that there are actually three program statements in line 10,
and they could have been written as lines 10, 20, and 30. Instead,
they have been combined into the one line by using colons () to
make separate statements. The advantage of using the colon is that
a line number has been saved (including the two bytes of memory
required). This saving can result in a significant increase in operat-
ing speed when accumulated in a lengthy program.

1-6 GETTING DETAILED PRINTOUTS AND CLEARING THE
SCREEN

The following program, MPG 2, gives a more detailed printout.
Line 40 of MPG 2 replaces the one line numerical answer with a

-t

15

complete statement showing both miles traveled and gallons con-
sumed, to make the answer easy to understand. Note the format
for the PRINT statement in line 40. Everything included within the
quotes prints on the screen. Numeric variables are not enclosed
in quotes so that instead of printing the letters, the Apple prints
the numeric values represented by the letters. Blank spaces are
left between letters and quotes so that proper spacing can result.
Type the new line 40 and run the program.

«0 REM MPG 2
10 SM = 15010: FM = 15315: G = 12.3
20 MT = FM — SM
30 MPG = MT /G
«40 PRINT "YOU HAVE TRAVELED "MT" MILES AT "MPG"
MILES/GALLON "
50 END

You can improve the presentation of the answer even further by
adding line 35, as in MPG 3. This line clears the screen and moves
the answer ten spaces down from the top.

«0 REM MPG 3
10 SM = 15010 : FM = 15315: G = 12.3
20 MT = FM — SM
30 MPG = MT / G
¢35 HOME : VTAB 10
40 PRINT "YOU HAVE TRAVELED "MT" MILES AT "MPG"
MILES/GALLON "
50 END

1-7 CONDENSING VARIABLE DATA ENTRIES

An easier way to enter variable data is to condense the entries
using the DATA statement, which allows you to enter a series of
numbers to be used as data variables. Line 10 of MPG 4 is the
DATA statement and is read by line 15, the READ statement,
which establishes the variables and the order they are to be read.
Try out this operation; it gives exactly the same result as MPG 3.

-0 REM MPG 4
«10 DATA 22,15075,15317
«15 READ G,SM,FM

20 MT = FM — SM

16

30 MPG = MT /.G

35 HOME : VTAB 10

40 PRINT "YOU HAVE TRAVELED "MT" MILES AT "MPG"
MILES/GALLON "

50 END

The advantage of the DATA statement is demonstrated in MPG 5,
which provides two sets of data in line 10.

«0 REM MPG 5
e5 HOME : VTAB 10
10 DATA 22,15075,15317,30,15317,15723,1
15 READ G,SM,FM
20 MT = FM — SM
30 MPG = MT / G
¢35 PRINT
40 PRINT "YOU HAVE TRAVELED "MT" MILES AT "MPG"
MILES/GALLON "
50 GOTO 10

Three different variables in line 15 read the six data items of line
10 in sequence, running through the program twice because of
the instruction in line 50. Line 35 is changed to a PRINT command
instead of HOME to avoid clearing the first answer and to put a
blank line between the two answers. The HOME statement is
moved to line 5 so that the screen clears only on the first pass of
the program. If the HOME statement in line 35 were left, the first
set of answers would be cleared before they could be read. Try it
both ways.

You will notice that MPG 5 runs as expected, except that it pro-
duces an OUT OF DATA message after giving both answers. To
provide a clean end, add line 17 and add three more data items to
line 10 in MPG 6. The added 999 is an unlikely answer and is used
solely to satisfy the conditional statement of line 17. The added 1’s
and commas (, 1, 1) simply fill out the third set of data to avoid
another OUT OF DATA message. Complete MPG 6 and run it.

«0 REM MPG 6
5 HOME : VTAB 10

»10 DATA 22,15075,15317,30,15317,15723,999,1, 1
15 READ G,SM,FM

17 IF G = 999 THEN END
20 MT = FM — SM

17

30 MPG = MT /G

35 PRINT

40 PRINT "YOU HAVE TRAVELED "MT" MILES AT "MPG"
MILES/GALLON "

50 GOTO 10

1-8 USING THE INPUT STATEMENT AND SAVING
PROGRAMS

The DATA statement is fine for programs that employ the same
data many times, but in a program that is to be used to compute
new data every time it is run, the INPUT statement works much
better to enter keyboard data. Line 10 replaces lines 10 and 17 of
MPG 6, and line 35 clears the screen for each fresh answer.

e0 REM MPG 7
5 HOME : VTAB 10
10 INPUT "ENTER STARTING MILES, FINISHING MILES,
AND GALLONS (INSERT A COMMA BETWEEN
ENTRIES) ";SM,FM,G
20 MT = FM — SM
30 MPG = MT / G
«35 HOME : VTAB 10
40 PRINT "YOU HAVE TRAVELED "MT" MILES AT "MPG"
MILES PER GALLON "
45 PRINT : PRINT : PRINT
50 GOTO 10

The format for the INPUT statement is very precise. The INPUT
statement is a form of PRINT statement and uses quotes to define
what is to appear on the screen. The semicolon following the final
quote must be used, or an error message will result, and the vari-
ables must be assigned in the same order as the answers are to
be typed. Answers must be separated by commas, and, therefore,
no INPUT statement answer should contain any commas except
those used for separation. The program will run continually ask-
ing for a new set of data following each answer. To exit the pro-
gram so that you can move on to something else, type fXB g or
hit . To save this program, now that all the steps for smooth
running are completed, type SAVE MPG 7 and hit @QEUIIE- The
red light on the disk drive will light, the previously initialized disk
in the drive will whirr and make noises, the cursor will disappear,

18

and when the data is saved, the cursor will reappear and the light
will go out. Type CATAE@E, and you will see the MPG 7 program
listed as a filed program.

1-9 INTERACTIVE PROGRAMMING WITH STRINGS

As a reward for progressing this far in the book, a game program
that will be amusing (hopefully) is next. This program is not all fun
and games, however; there are many new concepts introduced,
including string variables, which you need to learn how to use
before going further.

Type out the program called GAME and save it on disk, to guard
against accidental loss before you start. It is always a good idea to
protect lengthy programs by saving them as soon as they are
written, or even in stages as you go. When you save a program
under a previous name, the old program is erased and replaced
by the new one. You can, of course, file your progressive changes
under various names in order to refer back to earlier develop-
ments. This is particularly advisable when developing new com-
plex programs, since sometimes the “improved’’ versions are not
as good as the original.

Play the game a few times so that you understand what it does,
and then read further to understand the mysteries.

100 REM GAME

140 GOSUB 1000

500 INPUT "PLEASE TYPE YOUR OWN NAME "; NM$

590 GOSUB 1000

600 INPUT "PLEASE TYPE A SENTENCE DESCRIBING
YOUR FONDEST WISH " ; FW$

690 GOSUB 1000

700 INPUT "PLEASE TYPE THE NAME OF YOUR WORST
ENEMY "; WE$

710 GOSUB 1000

720 PRINT " TAKE A NUMBER FROM 1 TO 9"

725 GET NU$-

730 NU = VAL (NU$)

740 GOSUB 1000

750 IFNU < 1 OR NU > 9 THEN PRINT CHR$ (7) :
GOTO 710

19

800 IFNU /3 = INT (NU /7 3) GOTO 850

810 IF NU = 5 GOTO 860

820 GF$ = "HAS GONE TO FLORIDA "

840 PRINT WES$ + "" + GF$", " + NM$" SO YOU CAN
HAVE YOUR "FW$

845 GOTO 990

850 PRINT WE$" HAS TAKEN YOUR "FW$", TOO BAD,
"NM$

855 GOTO 990

860 PRINT "THIS IS YOUR LUCKY DAY, "NM$," TAKE
YOUR "FW$

990 VTAB 20 : PRINT "PRESS SPACE BAR TO
CONTINUE, ESC TO QUIT. "

992 GET S$

995 IF ASC (S$) = 27 THEN END

997 GOTO 710

1000 HOME : VTAB 10 : RETURN

A string variable is formed by using a dollar sign ($) at the tail end
of the root, as in line 500 of GAME where the string is NM$. The
contents of a string variable may be any groUp of alphanumeric
characters up to 255. Each time you use the string in a PRINT
statement, you get the whole string so that with a two- or three-
character variable anything from a letter to a paragraph may
appear. In GAME, NM$ becomes your name, and WE$ becomes
your worst enemy. Strings may be entered as answers to an
INPUT statement, as equations in programs, or as items in a
DATA statement. To illustrate this point, GF$ is used in line 820 to
make up part of the output statement in line 840. Note the format:
Everything to be included in the string is within the quotes, as in
line 820, and strings that are added together (concatenated) are
joined with a plus (+) sign, as in line 840.

Once you understand how letters, words, and phrases can be
inserted by an INPUT statement, you can see how easily words
can be manipulated so that they pop up at will in PRINT state-
ments. This technique is the foundation for creating interactive
computer programs, such as those used in teaching situations.

A string may be letters, numbers, or mixtures. Sometimes it is
better to use a string variable instead of a numeric variable, and
then the string variable can be converted to its numeric value.
This is done in line 730 where the conversion is made by an equa-

20

tion. The reason for using a string, in this case, is that although a
numeric variable will work just as well if correct answers are
always given, the technique used here responds equally to letters
and numbers and rejects wrong answers by going back to the
question. At the same time the Apple computer sounds a beep to
alert the user that something has been done wrong. Try picking
any keyboard character except the numbers 1 through 9 and see
how nicely this works.

The first part of line 750 defines which answers are not accepta-
ble, specifically anything not equal to (< >) 1 through 9. The first
reaction to a wrong answer is made by execution of the command
PRINT CHR$(7). The CHRS$(7) is the program statement equiva-
lent of a CONTROL G, and on the keyboard the bell signal is part
of the G key. Try typing {8 . Anytime the CHR$ () for-
mat with the appropriate ASCIl number for a control signal is
included, you will make that control signal execute at that point in
the program. In case you are mystified by the term ASCII, let me
explain. The letters stand for the American Standard Code for
Information Interchange, and as the name implies, signals with
this code permit computers to communicate with each other by
telephone line or other means. The peripherals used with your
Apple, such as the disk drive or the printer, all work with this code.
Each character has a numeric value, and upper- and lower-case
letters have different values. To help you find any codes you may
need and to clarify your understanding, two special programs are
provided in Chapter 2.

This discussion was the result of explaining how the bell signal is
made to sound on an erroneous input. A second action to the
same condition illustrates a special use of the colon (:) in mul-
tipart statements such as line 750. Once the conditional statement
is made, all other statements in the same line become subject to
the stated condition. Thus line 750 not only causes the beep to
sound, but also causes a return via line 710 to the original INPUT
statement, signaling that the Apple is still waiting for a satisfactory
answer.

Depending on which number has been selected, the program will
branch to one of three printouts given in lines 840, 850, and 860.
Line 800 provides an equation that responds to any number divisi-
bleby 3.1fNUis 1, 2, 4, 5, 7, or 8, the resulting division by 3 (NU/3)
will produce a compound fraction consisting of an integer (whole

21

number) and a decimal remainder. Equality with the right-hand
side of the equation INT(NU/3) (or the integer of NU/3) only
occurs for 3, 6, or 9. Thus, only those numbers will cause a jump
to line 850. For all other numbers the next step is line 810, and this
line causes a jump to line 860 only if the selected number is 5. For
the remaining numbers, the program goes directly to line 840. If a
jump occurred to either of the two previous printouts, then the
following printouts are jumped over by the GOTO statements in
lines 845 and 855. Now that you know which numbers to choose,
you can always get a happy answer. Sorry, if this explanation has
taken the fun out of the game, but now you have the key to creat-
ing your own simple games.

Line 990 starts a routine to end the program at any point and
coincidentally uses another form of INPUT statement. The GET
command of line 992, operating with the question asked in the
PRINT statement of line 990, functions in the same way as the
INPUT statement with one important difference. A GET responds
instantly to the next keystroke before the key can be
pressed. Thus, whatever character is entered becomes S$ and is
the input. Pressing the key causes the ASCII value (27) to
equal S$ (line 992), satisfying the equation in line 995, and making
the program end. Pressing any other key (including the space
bar) allows the program to continue to line 997, which loops back
to line 710.

One last feature has been introduced in the interest of saving
steps. It is a technique used in long programs whenever the same
routine occurs many times. Line 1000 contains three operations,
and whenever these operations are needed a statement such as
lines 140 and 590 calling for the subroutine in line 1000 is used.
The command always causes a return to the step follow-
ing the GOSUB instruction. Subroutines may be any length and
may include other subroutines nested within them.

1-10 CONCLUSION

This chapter has introduced most of the beginning concepts
needed for programming in BASIC, teaching mainly by example in
a concise, fast moving form that many users prefer to the slow
piece-by-piece feeding of new facts used by some traditional edu-
cators. The remaining chapters move just as quickly.

22

This pace will keep you from getting bored, but it may also move
you along too fast to catch everything on the first pass. Unless
you are an unusually quick student, you may benefit from reread-
ing this book at least once.

Editing and Utility Routines

Chapter 2

Now that you have some exposure to programming, you can
appreciate the need for quick, easy revision of material entered
into the memory of the Apple computer. Unless you are an expert
typist, you have probably made some errors in setting up the pre-
vious programs and perhaps used more time than you would have
liked in making corrections. Before you get into lengthy program
writing, it is worthwhile to stop and learn some of the tricks of
editing and correcting programs.

2-1 MOVING THE CURSOR TO MAKE CORRECTIONS —

To illustrate the correction techniques, make up a print statement
such as:

100 PRINT "NOW IS THE TIME FOR ALL GOOD MEN TO
COME TO THE AID OF THE PARTY. "

and enter it on the screen as a new one line program. Observe
that, as originally typed, both lines in this statement start at the
left-hand side of the screen. Now LIST the program and notice
how the format changes. The first line remains at the left-hand
side of the screen, but the second line is indented. We will soon
study a special problem created by this format change and an
easy solution to that problem. But first, let us look at a way to
make changes in existing statements.

The cursor can be moved to anywhere desired, and then entries
can be inserted or corrected. In order to make such changes
permanent, a very specific routine called pure cursor moves must
be followed. To initiate these moves, press the {3 key once.
After that, the keys [}, u n and ([fJ will move the cursor up, left,

¢ W B palv

24 (-

,r@n, and down, respectively. To exit this mode, use any other
/ key.;The first operation of any other key causes the exit and noth-
~—ing else. The following operations cause normal typing. If you
forget to type one dummy character, you will find that your first
expected character is missing. Caution:if-yeu-have.an_older
Apple computer.without the-autostartROM,.you.cannot.operate in

Try moving the cursor by using these keys. Move the cursor to the
middle of the test sentence and change a few words. Now, list the
program again and notice that your changes did not register!

You must first move the cursor to the very beginning of the num-
bered statement, that is, to the 1 in 100. Use the retype key (right
arrow) to bring the cursor to the beginning of the numbered state-
ment that needs the change and then type over the words or
letters that you wish to change. Complete the correction by mov- ...
ing the cursor all the way to the end of the line, with theretype-aitd \ — |
EPSSNEER keys and then hit [EEIENI. Now list the program
and see that your change registered. Also, note that the change
operation caused the sentence to separate whenever the retype
key moved the cursor over blank spaces in the left margin. Take
heart, correct this separation by remembering to use a special
command before making the change. As previously noted, the
originally typed sentence filled the whole line and crowded the left
margin. After the program was listed, all the lines except the first
were indented. Type line 100 all over again and LIST it. To restore

the listed line to the original format, type POKE 33,33 and hit
BT Al lines listed after that will crowd the left margin, and
when you make corrections using the pure cursor moves, no
blank spaces will be inserted. Try listing line 100 again.

The POKE caused location 33 to change from its normal 40 char-
acter per line control mode to 33 characters. Any characters in
the seven right most spaces of the cleared screen will remain.
This area does not clear during this POKE mode, and other
strange and sometimes undesirable effects will also occur. There-
fore, after all corrections are made, restore the normal mode by
typing POKE 33,40« TEXT

An easier method with the same effect is to type TEXT. You can
also clear everything on the screen and then POKE, using HOME :
POKE 33,33 and [T . To LIST line 100 at the same time, type
HOME : POKE 33,33 : LIST 100 and [EGI.

* E5Ca pe wg Ao i
Practice the pure cursor moves, listing the line after each change

to make sure you understand how to make the corrections regis-
ter correctly.

2-2 ADDING WORDS IN THE MIDDLE OF A STATEMENT ——

The pure-cursor-moves method of correction can work only if you
are replacing words with new words of the same or shorter length.
You can extend this procedure to add any length correction you
wish within the 255 character limit of a single numbered state-
ment. Pure cursor moves do not change the letters that the cursor
moves over. The only way to change these letters is to type a
different letter or a blank with the space bar. You can, therefore,
move the cursor to the place you want to make the insertion using
the left and right arrow keys; then move the cursor up or down
with pure cursor moves so that the cursor is on a blank space

-above or below the statement being corrected. Type the informa-

tion to be added (including all spaces), and then bring the cursor
back to the original point of insertion, using only pure cursor
moves. Finish going over the line with the retype key; then hit
and list the line. If you moved the cursor properly, the
insertion should be in place. Keep practicing making insertions
until you have it down pat. Being able to use pure cursor moves to
make corrections and insertions will save you much time later.

2-3 CHANGING/DELETING LINE NUMBERS

You can use pure cursor moves to change the line number of a
statement. When using this method, not only the statement with a
new number will appear, but the same statement with the original
number will also appear. Always delete the old statement after the
change by retyping only the line number unless, of course, you
need both statements or one statement with a slight change.

2-4 USING THE DISK CATALOG

Type CATAl@E and note that the disk drive goes into operation,
causing a catalog display of all the programs stored on the disk.
The information has many uses. For the programs generated so

26

far, an A followed by a number will appear along with the name
you assigned to each program. The A means that the record
stored on the disk is an Applesoft program; the number tells you
how much space the program takes up on the disk, and, of
course, the name tells you which program it is. The disk can hold

up to s%ﬁlefsfor drs«—epefgm?-systmw each:ﬂﬁ%
bytes long Or %4 total of 143,360 bytes. A byte is a single 8%|

character that occupies a single memory location. Your 48K
Apple Computer Ram, therefore, holds? X 1024, orw char-
acters. (1024 = 2 to the power of 10, and is 1K of bmar satyfage)
A single disk can, therefore, hold nearly ms times as much
information as the RAM. The number anngsnde each program is
the number of sectors that program occupies. When you try to
save more than the Qasee’fer-the disk can handle, you will get a
DISK FULL messags. {68K.of the 560K-is-used-fer-DOS.overhead).
Delete the last program you tried to store, insert another disk
(previously initialized), and again save your program. You can
also get a DISK FULL message if you try to put more than &%
catalog titles on the disk, even though free sector space is avail-
able.

2-5 LOCKING FILES

You can protect finished programs from accidental erasure by
locking the program. Type LOCK followed by the file name and
watch the disk go into action. When it stops, call for another cata-
log listing and note that the locked file is preceded by an asterisk.
You will not be able to write anything into this file unless you
unlock it, using the command UNLOCK and the file name.

2-6 WRITE PROTECTING A DISK

You may have noticed that you cannot write any information
onto the system master disk, that is because the disk is write
protected. Any disk can be write protected by closing off the
rectangular notch in the side of the diskette with tape. A write
protected disk can be written on if the notch is restored, or a new
notch cut into the side of the diskette. You can also write on both
sides of a diskette, by cutting an extra notch opposite the manu-
factured notch and inserting the diskette bottom side up. Such

-

27

disks are not quite as reliable as disks using one side only, (there
is never a free lunch). but for fun and games type storage and
especially for infrequently used back up files, the method offers
extra economy.

2-7 RECALLING FILES

You may have also noticed that unless you type the file name
exactly as stored when loading or running, you will get a FILE
NOT FOUND message. You can also file a program under a mis-
typed name, leaving the previous title and file untouched, which
can lead to later confusion. One way to avoid all these problems is
not to retype the title at all, but simply to use the pure cursor
moves to position the cursor at the beginning of the title, inserting
the desired command, such as SAVE or LOCK, by typing over the
left-hand catalog data, and then moving the cursor over the
existing title using the GERRE> . key. This eliminates all
chance of error and is usually easier than typing.

Several good utility routines are on the market that automatically
display a catalog menu when the disk is booted, allowing you to
make a selection with a single keystroke.

2-8 DELETING/CHANGING FILE NAMES

You may delete a file by typing DELETE and the file name. Be sure
to unlock any locked files first. To change the name of a file, type
RENAME old file name, new file name. Note that you need to type
the comma to separate the two file names.

2-9 FINDING HIDDEN CONTROL CHARACTERS

\\/I V\“‘/j/ﬂ’)¢ @Q‘ an errgy \‘rLTﬁ). {‘ l"‘f"
If you accidentally hit the key while typing a file name, jou ' (s,
may embed a hidden control character in the name. This hap- -7 '

pens most often with CONTROL AW

Ol e 2 1]
8 ne _heae

page-t = The most common contrl charac-
ter error occurs as a result of hitting the key while typing
the letter [[§ .

2-10 WORKING WITH ASCII CODES

Working with such codes as CHR$(7) shows the need to under-
stand how to translate the code numbers to their corresponding
characters and vice versa. Using the following two utility pro-
grams will help you to understand this translation. Type and RUN
the program called LETTER TO NUMBER. Enter any character on
the keyboard, including control characters, and note the corre-
sponding numbers. Make a record of these numbers. Note line
140, which includes two new commands, FLASH and NORMAL.
The action of these commands is obvious when you run the pro-
gram.

0 REM LETTER TO NUMBER

100 HOME : VTAB 10

110 PRINT "ENTER THE CHARACTER FOR WHICH YOU
WANT THE ASCII VALUE : ",C$

120 GET C$

125 HOME : VTAB 15

130 PRINT "THE ASCII VALUE FOR "C$" IS " ASC(C$)

140 VTAB 18 : PRINT "MORE? "; : FLASH : PRINT "Y/N " :
NORMAL

150 GET M$

160 IF M$ < > "N" THEN RUN

170 END

Save the previous program and then type and RUN the NUMBER
TO LETTER program. Convert the numbers you recorded back to
the original characters. Note that you can get the letter A by using
either 65 or 97. The difference is that 65 represents an upper-case
A and that 97 represents a lower-case A. Since the screen will
show either command as an upper-case A, you can see the differ-
ence only by programming PRINT CHR$(65) and PRINT
CHR$(97) into your printer.

0 REM NUMBER TO LETTER
100 HOME : VTAB 5

29

110 INPUT "ENTER THE ASCII CODE "; A

130 HOME : VTAB 10

140 PRINT "THE LETTER CORRESPONDING TO ASCII
CODE" : VTAB 12 : HTAB 18 : PRINT A : VTAB 14 :
HTAB 16 : PRINT "IS " CHR$(A)

150 VTAB 18 : PRINT "MORE? (Y/N)"

160 GET M$

170 IF M$ < > "N" GOTO 100

180 END

Now that you understand the function of these programs, you can
keep both of them on disk and use them anytime you need to
analyze codes and numbers.

2-11 USING PRINTER COMMANDS

To turn the printer on, use the command PR#1 (assuming your
printer control card is in slot # 1), either in a numbered statement,
or as a direct (immediate execution) command. From that point
on, all PRINT statements will print out both on the screen and on
the printer. The command PR#0 turns the printer off. That is all
you have to know if you are content to limit your print commands
to the basic character size that your printer offers, and if you will
accept a 40 character line on your printed sheet. The commands
for special type sizes and styles vary with different printers and
will be dealt with in other parts of this chapter.

Supecseng |
The Apple paraftel-printer card requires a special comﬁg'ngagg to
change the standard , 48 Character line width of the-seréen to
another width. Any desired width, up to the limit of the capacity of
the printer may be obtained by using PRINT CHR$(9) “XXN’’;
where XX is the number of characters you want per line. \Athern=
using-this~commard-de-net-use-N-as.a-program.variable. fyou=
forget-this warning-yoeu-may.find-your-program.variable-interact-
ing-with~the-line-width-command;-causing-erratic_tine-widths.to
print-out... B

You may use this line width control as either a direct command or
in a numbered program statement. The command is automatically
cancelled by a PR #0. An example of the use of this command is
given in the program under the main heading 3-7. You may also

%

(1 3690 v
“N

use CONTROL IT[the equivalent of CHR$(9)] if you prefer. My own
choice is for the visible form, CHR$(9).

H-you use longer than a.40-character-line-without-shutting-the
screen.off,.you.could.-be-inviting-trouble. If<the.screen logic-cir-
Cuits-try-to-operate.with.anything-longer-than.the-standard.width, |
confusion-may.result;-which-can.cause.strange.things to-happen. t
The.screen circuits could-introduce-machinetanguage that- weuld
appear-in- the-middle-of-beginning prograr statements-and.clab-
berthe-program-All-this-can'beé avoided by Using-a-command-that
turns-off the screen..That-command-is ROKE-1943:+~assuming- '
yaur.printer_is.in.slot ##~and-assuming.that.your.printer.and
controt” 'ca‘Fd"“rTa‘Q“mm-aAme.ieed.mmmand with- every-RETURN:
For.other-slots,_us€_the generalized-form:=POKE 1912wyl
(where s.is.the.slot.number).f your-printer does-not-need-the.line
feed-command-use-POKE 1912 +-s;0-=kike.the.line width com-
mand,.this poke is cancelied-by-a-RR#0...

Machine language, incidentally, is assembly language program-

med permanently into all computers including the Apple com- ﬂ
puter. Although machine language is more flexible and efficient 5; ,

than Applesoft BASIC or any other high-level language, it is more =~
difficult to learn and use. You will not be concerned with it unless 1“3
you advance to a very sophisticated level of programming.

R3(%
1\.., g

Apple provides alternate commands for turning the printer on and CT
off, and these commands may prove useful under those peculiar =
program conditions where the PR#1 and PR#0 commands do

not work as they should. ﬂ:é&e, commandm &

E=54;240"POKE-55:253-fer-off. An exam-
ple of the use of this and other special print commands is pro- |
vided in the program at the end of the next section of this chapter
under main heading 2-12.

2-12 SPECIAL COMMANDS FOR THE CENTRONIX 737
PRINTER

The Centronix 737 (and successors) is a very flexible model offer-
ing three basic type styles that may be printed in either normal or
expanded mode. This printer can also underline as it prints. Spe-
cific, tested examples of how to execute the commands for this
printer are included in the following paragraphs.

A — 'f

31

To select the smallest print size available, which is 16.7 charac-
ters per inch, the printer manual simply tells you to use the deci-
mal code 27,20. However, to make the printer operate in this size
follow this sample:

100 PRINT CHR$(27);CHR$(20);

The semicolons assure that there are no extra line feeds when
you turn on the printer with these commands. The printer will stay
at this size until you send another code to the printer or shut the
printer off. When you turn the printer back on, it will resume its
normal (default) size, which is 10 characters per inch. Or, instead
of turning the printer off to get back to the normal size, use the
command:

100 PRINT CHR$(27); CHR$(19);

To select proportional print which uses letters of differing widths
to simulate printers type such as the type in this book, use PRINT
CHR$(27);CHR$(17);.

To select elongated print, which has letters that are stretched out,
use CHR$(27);CHR$(14);. (Remember you must use the semico-
lon, or you will get a simultaneous line feed cancelling the com-
mand.) This command automatically cancels at the end of each
line. To cancel the command before the end of a line use
CHR$(27);CHR$(15);. Note that this mode may be used with any
of the three basic sizes, giving a total of six character sizes and
styles from the one printer.

To start underlining use the command PRINT CHR$(15). To stop,
use CHR$(14). To prevent a line feed, which would start a new
line of print, use a semicolon after each underline command.

To insert a line space ordinarily a PRINT command will cause a
blank line to print on the screen or paper. The Centronix 737,
however, needs the format PRINT " " to do this.

To illustrate the applications of the previous commands, the
PRINTER DEMO program is included. Note the use of the line skip
variable SC in lines 235 and 290, and note the application in the
subroutine of line 580. The HTAB command, which is introduced
in Chapter 3, only works out to &0 characters, beyond that use
POKE 36,XX where XX is the number of tab spaces required.
There are many examples of this command, starting with line 121
of the PRINTER DEMO program.

32

The entries in the PRINTER DEMO program will produce the
cover type for the original version of this book which was privately

produced by the author. The illustration below shows the results
of this program.

POLISHING
YOUR

HPPIL.E
VOLUME I
A FRACTICAL MANUAL
FOR THE NOVICE F'F\'OGRAMMER

BY HERE HONIG

A WEALTH OF HARD TO FIND
FROGRAM IDEAS AND TECHNIQUES

FROGRAMS RANGE 3
FROM THE MOST ELEMENTARY
TO ADVANCED DISK STORAGE
AND FRINTER FUNCTIONS.

FUN AND EASY TO FOLLOW

100
110
112
115

120 -

121
-123
124
125
130
140
145
150
160
170
175
180
185
190
200
210
225

230

232

235
240
245
250
255
260
265
270
280
285
290
295
300
400
500
505

\ A ; o wor s
(1 33

REM PRINTER DEMO (TITLER)

GOTO 500

GOSUB 530 : POKE 36,53

GOSUB 510

PRINT "POLISHING" A
PRINT "": PRINT " " : POKE 36,61 : GOSUB 510
PRINT "YOUR"

PRINT " " : PRINT " " : POKE 36,59 : GOSUB 510
PRINT "APPLE"

PRINT nn

GOSUB 550

POKE 36,51

PRINT "VOLUME I'

PRINT " "

GOSUB 540

POKE 36,25

PRINT "A PRACTICAL MANUAL" : PRINT ""
POKE 36,21

PRINT "FOR THE NOVICE PROGRAMMER"
GOSUB 540 : GOSUB 550

PRINT "

POKE 36,50

PRINT "BY HERB HONIG"

SC = 4 : GOSUB 580 : GOSUB 530 : POKE 36,48 :
PRINT "A WEALTH OF HARD TO FIND" : POKE 36,44 :
PRINT "PROGRAM IDEAS AND TECHNIQUES"
SC = 2 : GOSUB 580

GOSUB 540

POKE 36,28

PRINT "PROGRAMS RANGE"

POKE 36,22

PRINT "FROM THE MOST ELEMENTARY"

POKE 36,22

PRINT "TO ADVANCED DISK STORAGE"

POKE 36,23

PRINT "AND PRINTER FUNCTIONS."

SC = 3 : GOSUB 580

GOSUB 550 : GOSUB 510 : POKE 36,17

PRINT "FUN AND EASY TO FOLLOW"
PREICEND— PRIV Ciféd (%) 'PRY
PROKE-54;0--ROKE-55;193" ﬁ,d CHR ‘<rf/ m?
PRINT CHR$ (9)"120N"; -PGKE—‘LO—‘I-&G—.—GOTO 112

N

510 PRINT CHRS$ (27); 6HR$-(4); : RETURN : REM
ELONGATED PRINT v g,

520 PRINT CHR$ (27); CHR$-(15);-: RETURN : REM STOP
ELONGATED PRINT » put,

530 PRINT CHRS$ (27); €HR$-(+7): : RETURN : REM
PROPORTIONAL "‘['':

540 PRINT CHR$ (27); 6HR$~(19); : RETURN : REM
PRIMARY CHARACTER SIZE

550 PRINT CHRS$ (27); CHR$-(20); : RETURN : REM SMALL
PRINT R

580 FOR | =1 TO SC : PRINT "": NEXT I : RETURN

2-13 SPECIAL COMMANDS FOR THE PAPER TIGER

Another popular printer that also offers variable type size is the
IDS Paper Tiger, Model 440. The commands for this printer are
different from those just described. Unlike the Centronix 737, the
Paper Tiger has a switch selector system that permits it to operate
on any one of its print styles when it is turned on. The style can be
changed by programming the appropriate commands.

To select small print which is 16.5 characters per inch, use
100 PRINT CHR$(31);
To select 12 characters per inch, use
100 PRINT CHR$(30);
To select 10 characters per inch, use
100 PRINT CHR$(29);
To select 8.3 characters per inch, use
100 PRINT CHR$(28);

To select enhanced print, which is similar to the elongated print
on the Centronix 737, use

100 PRINT CHR$(1);
To select normal mode use
100 PRINT CHR$(2);

The normal mode command cancels the enhanced mode

\

\ 1

s —TWNIEL N AnT LA

"jl \ (€ 3‘1“1 i] I Myl G
{i

el R o ey 35

2-14 SPECIAL COMMANDS FOR THE EPSON MX-80

The-Epson MX-80 offers two basic type sizes with three different
modes of character emphasis: normal, enhanced, and double
strike. It also provides great flexibility in control of the horizontal
line feed spacing and the vertical and horizontal tabbing. The
following test program will allow Epson users to exercise the
Prinier INrough s most imporiant modss, using examples of typi-
cal commands. Because of the large number of printing possibili-
ties, experiment with combinations of these commands to gain
experience in programming the full range of possibilities. This
program is intended to show correct format for Apple use.

100 REM EPSON MX-80 TEST

105 PR#1 .

110 PRINT CHR$(15); : PRINT "CONDENSED CHARACTER
TEST'

120 PRINT CHR$(15);,CHR$(27);'G" : PRINT "CONDENSED
SIZE/DOUBLE STRIKE"

130 PRINT CHR$(18); CHR$ (27)'H"; : PRINT "STANDARD
SIZE/SINGLE STRIKE"

140 PRINT CHR$(27)'G"; : PRINT "CHANGE TO DOUBLE
STRIKE" |

150 PRINT CHR$(27) "H" CHR$(27)'E"; : PRINT "CHANGE TO
SINGLE STRIKE/EMPHASIZED"

160 PRINT CHR$(27) "G"; : PRINT "CHANGE TO DOUBLE

. STRIKE/EMPHASIZED"

170 PRINT CHR$(27)'H"; CHR$(27)'F"; : PRINT "CANCEL
EMPHASIZED"

180 PRINT CHR$(15);CHR$ (14); : PRINT "DOUBLE
CONDENSED"

190 PRINT CHR$(14);CHR$(27)'G"; : PRINT "DOUBLE
CONDENSED/DOUBLE STRIKE"

200 PRINT CHR$(18);CHR$(27)"H"; : PRINT "CANCEL SHIFT
IN (CONDENSED SIZE)/CANCEL DOUBLE PRINT"

210 PRINT CHR$(14); : PRINT "'DOUBLE SIZE"

220 PRINT CHR$(14);CHR$(27)'G"; : PRINT "DOUBLE SIZE/
DOUBLE STRIKE")

230 PRINT CHR$(14); CHR$ (27)'E"; : PRINT "DOUBLE SIZE/
DOUBLE STRIKE/EMPHASIZED"

240 PRINT CHR$(27)'0"; : PRINT "1/8-INCH LINE SPACING"

250 PRINT CHR$(27)"1"; : PRINT "7/72-INCH LINE SPACING'

36

260
270

280
290

300
310

PRINT CHR$(27)"2"; : PRINT "1 /6-INCH LINE SPACING"
PRINT CHR$(27)'B"; CHR$(N + 128); : REM N = VTAB
SETTING, SEE LINE 280

PRINT CHR$(11); : PRINT "EXECUTES VTAB SETTING"
PRINT CHR$(D);CHR$(N1); CHR$ (N2); CHR$ (N3); CHR$
(0); : REM HTAB SETTING, SEE LINE 300

PRINT CHRS (9); : PRINT "EXECUTES HTAB SETTING
PR#0 : END

Some Simple, Practical Programs

Chapfer 3 —

The first step in any programming is to define what the program is
to do. Now that many gas stations are measuring their delivery in
liters, it would be useful to develop a program that shows you how
many miles per gallon your car is getting, using how many liters
you bought per tankful. Because this is a learning experience, we
will develop this program in small, easy steps.

3-1 PRINTING TABLES

To illustrate the use of tables and add a new dimension to the
MPG programs, try the M/L 1 program. The new dimension is
conversion from liters to gallons so that you can compute gaso-
line consumption even when your station measures its sales in
liters.

0 REM M/L 1

10 HOME : VTAB 10

20 INPUT "ENTER STARTING MILES, FINISHING MILES,
AND LITERS CONSUMED (INSERT A COMMA
BETWEEN EACH ENTRY)";SM,FM,L

30 MT = FM — SM: REM MT = MILES TRAVELED

40 G = L *.264200793 : MG = MT / G

45 REM MG = MILES PER GALLON

50 HOME : VTAB 10

60 PRINT" MILES"

61 PRINT "TRAVELED LITERS GALS MPG "

62 PRINT

63 HTAB 3 : PRINT MT; : HTAB 12: PRINT L; : HTAB 18 :
PRINT G; : HTAB 30 : PRINT MG

65 PRINT : PRINT : PRINT

37

38

70 PRINT " MORE? (Y/N) "
80 GET M$

90 IF M$ = "Y"GOTO 10
95 IF M$ <> "N"GOTO 70
100 END

RUN the M/L 1 program before reading the explanation that fol-
lows.

Line 60 prints the word MILES as the first line in the table head-
ings. Note that MILES is indented two spaces, by allowing the
appropriate number of spaces between the first quote mark and
the letter M. Line 61 provides the second line of the heading,
with the appropriate spacing. Line 63 introduces a new tech-
nique to space out the printout. The HTAB command moves the
first letter of the printout the designated number of spaces from
the left margin. By using a semicolon after each printout, every-
thing is made to print on one line, spaced under control of the
HTABs.

3-2 ROUNDING

The M/L 1 program works well, except that the answers are given
to far more decimal places than needed. A more useful result can
be obtained by rounding the answer to two places for gallons and
liters, and three places for miles per gallon, using the rounding
formulas added in steps 52, 53, and 54 of the M/L 2 program.
These formulas round with fairly good accuracy, but they show up
a characteristic of the Apple computer; which is, when the right
most decimal digit is a 0, it is dropped.

For the curious, here is a brief explanation of why the formula
works. Assume the unrounded value of G in line 52 is 10.47832.
Multiplying by 100 yields 1047.832, and the inte §?r function would
truncate this to 1047 if we had not added the 0.8~ With the addition

“1044-832-+-0-8-=—1048:632) we truncate to 1048, and dividing
this by 100 yields 10.48, a properly rounded answer.

o0 REM M/L 2
10 HOME : VTAB 10
20 INPUT "ENTER STARTING MILES, FINISHING MILES,
AND LITERS CONSUMED (INSERT A COMMA
BETWEEN EACH ENTRY) " ; SM,FM, L

n e I s

39

30 MT = FM — SM: REM MT = MILES TRAVELED
40 G =L =.264200793 : MG = MT / G
45 REM MG = MILES PER GALLON
50 HOME : VTAB 10 St
52 RG = INT (G = 100 +"$) / 100
53 LR = lNT(L*100+Q)/1OO

54 MR = INT(MG#1000 .5) / 1000

60 PRINT MILES "
61 PRINT "TRAVELED LITERS GALS MPG "
62 PRINT

«63 HTAB 3 : PRINT MT; : HTAB 12 : PRINT LR; : HTAB
22 : PRINT RG; : HTAB 32 : PRINT MR
65 PRINT : PRINT : PRINT
70 PRINT " MORE? (Y/N) "
80 GET M$
90 IF M§ = "Y" GOTO 10
95 IF M$ <> "N" GOTO 70
100 END

The introduction of the rounding formulas and headings during
the development of this program left some crowding between
lines 50 and 70, so before proceeding let us renumber the pro-
gram to allow room for new steps. The Apple does this with
astounding ease and now is a good time to demonstrate the pro-
cess. Before you proceed SAVE M/L 2.

£ 3-3 RENUMBERING AND LISTlNG *

Insert the system master disk and type RUN RENUMBER. After
. the disk stops and the cursor starts to blink, hit @RILLIE. A =

- message will appear at the top of the screen, indicating that the

renumber program is ready to run. Insert your regular program
disk back in the disk drive and type LOAD M/L 2 (or whatever you |
named the program). When loading is complete, type: & F50, | 20 |

| indicating that the first step should be renumbered as 50, and all
l other steps should be numbered in increments of 20. Almost;

k

immediately the process is complete and can be verified by Ilstmgf

the programg?o'u will have one problem readmg this list, how-

ever, and that is, because the program now occupies more than
one screen of space, the top lines of the program scroll off the top
of the screen to make room for the lines that follow.

40

You may stop the lines from scrolling completely through the pro-
gram by typing a [ERBEas soon as the screen starts to fill.
Typing any character will start scrolling again, and you can stop
as often as you wish with the [[IRBB). Practice this technique,as
you will need it often. You may also list small portions of the
program at a time. To do this type LIST 50-290. When you want to
view the remainder of the program type LIST 310-.

«50 REM M/L 3
70 HOME : VTAB 10
90 INPUT "ENTER STARTING MILES, FINISHING MILES,
AND LITERS CONSUMED (INSERT A COMMA
BETWEEN EACH ENTRY) ";SM,FM,L
110 MT = FM — SM : REM MT = MILES TRAVELED
130 G = L * .264200793 : MG = MT / G
150 REM MG = MILES PER GALLON
170 HOME : VTAB 10
190 RG = INT (G * 430 + .8) / 100
210 LR = INT (L = 430 + .8) /100
230 MR = INT (MG * 1000 + .5) / 1000
250 PRINT" MILES"
270 PRINT "TRAVELED LITERS GALS MPG "
290 PRINT
310 HTAB 3 : PRINT MT; : HTAB 12 : PRINT LR; : HTAB
22 : PRINT RG; : HTAB 32 : PRINT MR
330 PRINT : PRINT : PRINT
350 PRINT " MORE? (Y/N)"
370 GET M$
390 IF M$ = "Y" GOTO 70
410 IF M$ <> "N' GOTO 350
430 END

Another way to view a long program is to slow down the operating
speed of the Apple. To do this, type SPEED = 100 before you list
the program. The program will then scroll very slowly, and you
can follow its action. Try other speeds to become familiar with the
available range. The normal maximum speed is 255. Now that you
have seen the disadvantages of reading program lists on-screen,
use the PRINT commands learned under the main heading 2-11
and PRINT out the program. With your printer set up and ready,

type PR# 1, [EENN. LIST. RO You should get a complete
printed list, just like the one in this book.

gy

41

The renumbering process is neat, clean, and easy to use. One
problem will sometimes show up, as in the example just renum-
bered, and you must watch for it whenever you renumber. Look at
the new steps 190 and 210 and compare them with the old steps
52 and 53 as printed here in the M/L 2 program. Notice how in the
rounding formula the 100 inside the parentheses is treated as a
renumbered step (old step 100 is now 430). If you run this pro-
gram without correcting these two steps, you will get answers
approximately 4.3 times too high. Make the correction now, so
you do not forget, and always check for this condition when using
the renumbering program.

One way to avoid this problem completely is to define the round-
ing factors early in the program as follows for example in step 55:

55 R1 = 100 : R2 = 1000

If you then use R1 and R2 in place of 100 and 1000 in the round-
ing formulas, you will avoid trouble.

3-4 STORING DATA IN MEMORY WITH SUBSCRIPTED
VARIABLES

To average out the results of several readings in order to get a
more accurate measure of the performance of your car and also
to pick up some new programming techniques, make the addi-
tions in program M/L 4. Add lines 75, 240, 300, 313, 314, 315, 316,
and 326. Add the subscript (l) as shown in steps 110, 130 (two
places), 190, 210, 230 and 310 (4 places). Run the program to see
how it works, and then continue reading.

o0 REM M/L 4
«10 FORI| =1TO3
70 HOME : VTAB 5
«75 PRINT "FOR ENTRY #'I
80 PRINT : PRINT : PRINT
90 INPUT "ENTER STARTING MILES, FINISHING MILES,
AND LITERS CONSUMED (INSERT A COMMA
BETWEEN EACH ENTRY) ";SM,FM,L
¢«110 MT(l) = FM — SM: REM MT = MILES TRAVELED
«130 G = L = .264200793 : MG(l) = MT(l) / G
150 REM MG = MILES PER GALLON
170 HOME : VTAB 10

42

«190 RG(l) = INT (G * 100 + .8) / 100
«210 LR(l) = INT (L = 100 + .8) / 100
+230 MR(l) = INT (MG(l) * 1000 + .5) / 1000
«240 NEXT |
250 PRINT" MILES"
270 PRINT "TRAVELED LITERS GALS MPG"
290 PRINT
«300 FORI =1TO3
«310 HTAB 3 : PRINT MT(l); : HTAB 12 : PRINT LR(l); :
HTAB 22 : PRINT RG(l); : HTAB 32 : PRINT MR(l)
¢313 NEXT |
¢314 HTAB 32 : PRINT "------ n
«315 TL = (MR(1) + MR(2) + MR(3)) / 3
¢316 TR = INT (TL *1000 + .5) / 1000
¢326 HTAB 22 : PRINT "AVERAGE:- ", : HTAB 32 : PRINT
TR
330 PRINT : PRINT : PRINT
350 PRINT " MORE? (Y/N)"
370 GET M$
390 IF M$ = "Y" GOTO 70
410 IF M$ <> "N" GOTO 350
430 END

In step 10 the FOR statement means that each time the step is
included in the loop it will advance by one count, until it reaches
3. The loop is closed by the NEXT in step 240, which causes a
jump back to step 10 for any value of | between 1 and 3. When |
reaches 4, the program continues to step 250. We can understand
how the three different values of | create three separate sets of
values by analyzing the internal structure of the loop.

For each pass through the loop step 75 will read successively for
entry 1, for entry 2 and for entry 3. In step 110, MT(l) will take on
values of 1,2, and 3 for | so that the one variable becomes, in
effect, three separate variables. Demonstrate this for yourself by
running the program and stopping it by answering N to the last
question. (This places you in the immediate execution mode, as
opposed to the deferred execution mode, which operates with
line numbered statements.) You can now print out the value of
any variable. Type ? MT(1) and watch the number on the screen.
Note that it is the same as answer 1 under MILES TRAVELED. Do
the same for MT(2) and MT(3). Try any other variable in the pro-
gram. Remember this technique for printing on the screen in the

43

immediate execution mode because it is often useful for finding
where the bugs are in programs that will not run correctly. It can
also be used within programs as a temporary step to print key
variables for debugging. A sophicated technique for checking the
value of key variables is given in Chapter 5 (5-4).

Subscripted variables such as MT(1), add considerably to the
flexibility of the programmer. We will be studying additional varia-
tions of these variables later.

As previously described, the program executes three passes
through the loop, allowing you to input three separate sets of
values and store three separate sets of answers. A second loop,
embracing steps 300 through 313 prints out the stored answers.
After the third pass the program proceeds through the PRINT and
computation statements of steps 314 through 326 and reaches
the stopping point.

3.5 USING THE CONDITIONAL STATEMENT FOR GREATER
FLEXIBILITY

To modify M/L 4 to work with either liters or gallons as input data,
change the steps to create M/L 5 as follows. Replace step 90 as
shown. Add steps 115 through 145, replacing step 130 as shown.
When you run this program, you may enter either gallons or liters,
in any order, and get an answer showing both gallons and liters.
You will note how UMS$ in line 90 is used to define the input as a
unit of measure in liters or gallons. Line 115 directs the program
to the appropriate formula, either in lines 120 and 130, or line 140.
The computation for miles per gallon takes place in line 145, after
the number of gallons has been computed. From line 150 on, the
program is the same as M/L 4.

o0 REM M/L 5
10 FORI=1TO3
70 HOME : VTAB 5
75 PRINT "FOR ENTRY #'l
80 PRINT : PRINT : PRINT
.90 INPUT "ENTER STARTING MILES, FINISHING MILES,
GALLONS (G) OR LITERS (L), AND QUANTITY
CONSUMED ";SM,FM,UM$,U
110 MT() = FM.— SM : REM MT = MILES TRAVELED

e115
0120
«130
¢ 135
e 140
e 145
150
170
190
210
230
240
250
270
290
300
310

313
314
315
316
326
330
350
370
390
410
430

3-6 USING MULTIPLE COMPUTATIONS

IF UM$ = "G" THEN GOTO 140

L=U
G = L = .264200793
GOTO 145

L=38785=U:G=U

MG(l) = MT() / G

REM LM = MILES PER LITER

HOME : VTAB 10

RG(l) = INT (G = 100 + .8) / 100

LR({) = INT (L = 100 + .8) / 100

MR(l) = INT (MG(l) = 1000 + .5) / 1000

NEXT |

PRINT " MILES "

PRINT "TRAVELED LITERS GALS MPG "
PRINT

FORI=1TO3

HTAB 3 : PRINT MT(l); : HTAB 12: PRINT LR(l); :
HTAB 22 : PRINT RG(l); : HTAB 32 : PRINT MR(l)
NEXT |

HTAB 32: PRINT "---- - - L

TL = (MR(1) + MR(2) + MR(3)) / 3

TR = INT (TL * 1000 + .5) / 1000

HTAB 22: PRINT "AVERAGE:- ", : HTAB 32 : PRINT TR
PRINT : PRINT : PRINT

PRINT " MORE? (Y/N) "

GET M$

IF M$ = "Y" GOTO 10

IF M$ <> "N" GOTO 350

END

You are now ready to start developing more complex practical
programs. Let us define a manufacturing problem and create a
program to simplify its management.

The Wooden Shoe Manufacturing Co. (WSM) wants to know the
cost of making a certain shoe in various quantity production lots.
They require 8.3 hours to set up the wood carving machine, which
then turns out 500 pairs of shoes per hour. Each pair requires
$1.275 worth of wood, and direct labor costs are $62.39 per hour.

45

The cost to the wholesaler will then be 3 times the direct manufac-
turing cost.

0 REM WSM 1
10 SU = 62.39 = 8.3: PM = 62.39 / 500 : MC = 1.275
20 REM SU=SET UP COST, PM = MACHINE COST PER
PAIR,MC = MATERIAL COST PER PAIR, UC = UNIT
COST PER PAIR
90 HOME
100 PRINT "QUANTITY MFG. COST "
105 PRINT
110 IF Q => 10000 GOTO 140
120 Q = Q + 1000
130 GOTO 150
140 Q = Q + 5000
150 UC = SU/Q + PM + MC
160 PRINT Q; : HTAB 12 : PRINT UC .
170 IF Q <>50000 GOTO 110
180 END

A beginning solution is provided in program WSM 1. Type out this
program, RUN it, and SAVE it. This program contains no new
techniques, just some new formulas that are used to do new
things. Study the program until you understand exactly why the
program works the way it does and then try substituting other
numbers in line 10 and see how they affect the manufacturing
cost.

It will be useful to save the different runs, so let us use the printer
to preserve each run on paper. To do this, change steps 90 and
180, as shown in WSM 2. Now when you run the program, your
printer will print it out, at the same time it appears on the screen.

.0 REM WSM 2
10 Sl = 62.39 = 8.3 : PM = 62.39 / 500 : MC = 1.275
20 REM SU=SET UP COST, PM = MACHINE COST PER

PAIR, MC = MATERIAL COST PER PAIR, UC = UNIT
COST PER PAIR _

.90 PRet PRINT CHftg (M) "PRY
100 PRINT "QUANTITY MFG. COST "
105 PRINT

110 IF Q => 10000 GOTO 140
120 Q = Q + 1000
130 GOTO 150

46

140 Q = Q + 5000
150 UC = SU/Q + PM + MC
160 PRINT Q; : HTAB 12 : PRINT UC
170 IF Q <> 50000 GOTO 110

.180 RR#-8—END VIV 0 504 PRE0" LivD

3-7 USING THE PRINTER FOR MULTIPLE REPORTS

The printer allows us to break free of the limitations of a 40 char-
acter per line screen so that we can now print out several columns
of data to show WSM their costs and the selling price for various
quantities per lot. Program WSM 3 does just that. There are many
new steps in this program so type them carefully to avoid errors.
As you may have found out by now, it takes much longer to find
your errors than to make them. RUN the program, SAVE it, and
then continue reading for the explanation.

Step 90 turns the printer on, using the commands introduced
under the main heading 2-11. Step 100 and new step 103 have
been expanded to include the extra column headings, and steps
152 to 158 introduce new variables to meet the expanded needs
of the program. These variables are rounded in step 160.

Note that all computations are located between step 140, which
establishes the changing value of Q, and step 160, which prints
each changing line of the output of this program. Obviously, it is
necessary to make the computation in that part of the program
where all variables have been set to the correct value for the job to
be done.

«+0 REM WSM 3
10 SU = 62.39 * 8.3:PM = 62.39 / 500 : MC = 1.275
20 REM SU=SET UP COST, PM = MACHINE COST PER
PAIR,MC = MATERIAL COST PER PAIR, UC = UNIT
'y, COST PER PAIR
9, 7' @80 7, PR#1": PRINT CHRS$ (9)'80N"; - POKE=+948:1
«100 PRINT "QUANTITY MFG. COST"; : HTAB 26 : PRINT
"HOURS "; : HTAB 36 : PRINT "MACH $ "; : POKE
36,48 : PRINT "MAT'L $ *; : POKE 36,60 : PRINT
"WHLS'L $ "

«103

105
110
120
130
140
150

0152

o154
» 156
158

« 160

¢ 165

170

47

HTAB 14 : PRINT "/UNIT"; : HTAB 26 : PRINT "/LOT",
. HTAB 36 : PRINT "/LOT"; : POKE 36,48 : PRINT "/
LOT", : POKE 36,60 : PRINT "/ DOZ"
PRINT " "
IF Q => 10000 GOTO 140
Q = Q + 1000
GOTO 150
Q = Q + 5000
UC=SU/Q+ PM + MC
= 8.3 + (Q / 500) : REM MACHINE HOURS
NEEDED PER LOT
MD = HN #* 62.39 : REM MACHINE COST PER LOT
=Q=1.275

S = UC = 3 * 12 : REM WHOLESALE COST PER
DOZEN
HR = INT (HN = 100 + .8) / 100 : SR = INT (SD =
100 + .8) / 100 : RR = INT (RS = 100 + .8) / 100 :
MR = INT (MD = 100 + .8) / 100
PRINT Q; : HTAB 12 : PRINT UC; : HTAB 26 : PRINT
HR: : HTAB 36 : PRINT MR; : POKE 36,48 : PRINT SR;

: POKE 36,60 : PRINT RR
IF Q <> 50000 GOTO 110

180 PR#6—END/F | (Y] PRI FLEVD

Data Storage and Retrieval
Chapter 4

Now that you have developed some feel for programming, let us
begin to discuss the disk storage system and store data as text
files for later retrieval.

Since many individuals may need a system to store names,
addresses, and phone numbers, we will use an exercise to
develop a very useful listing system, which can create a telephone
directory and also provide mailing labels for Christmas card lists
or other lists that require names, addresses, or phone numbers
either for mailing or phoning friends or other selected groups.

4-1 PROGRAM DESCRIPTION

This is the longest, most complex program in this book, and
before you go through all the time and trouble of typing it, you will
want to know exactly what it will do for you. The program allows
you to enter names, addresses, and phone numbers to create
long lists. This program has been limited to 250 names per list, as
explained later. That number of names is just about the practical
limit for RAM storage and sorting with a program of this design
and a 48K Apple Il computer. Disk space is available for many
such lists, filed under different names.

Enter the names in any order, and then, with the SORT option,
arrange them alphabetically. This feature also allows you to enter
names at the end of the list and later sort them into their alphabeti-
cal positions. You may print out this list in two different forms. In
one form all data is printed on one line, making it useful as a
telephone directory. In the other form only the name and address
are printed, permitting you to make address labels. You may add
to the list at any time, revise any line or lines of any file, and may

49

50

even create special lists for everyone in the same city, or on the
same street, with a minimum number of entries. This program
even makes it easy to enter the name of your own city and other
cities: based on the assumption that most of your friends live in
just these few places. Typing a single selected letter will-cause a
city name to print, saving you many keystrokes. Similarly, a single
letter can generate street, road, place, etc., or area code and -
telephone exchange prefix, leaving you to type only the last four
digits of each phone number.

Most important, however, is that you will learn many new tech-
niques associated with data storage and retrieval so that you are
better prepared to create your own programs.

4-2 GENERAL USE PROGRAMMING TOOL

Before starting the full program, let me introduce you to a tool
that can be applied to every long program you write, to make
editing and listing easier so that you catch and correct bugs as
you work. This tool is' a subprogram consisting of lines 20
through 45, 2150, and 2160. The first six lines create a menu that
allows you to (1) Run the program in normal fashion; (2) Clear
the screen and enter the compact editing mode described under
the main heading 2-11; (3) Turn on the printer, print a complete
list, and then turn off the printer and come to a complete stop,
ready for more editing.

The subroutine at line 1330, called for in line 2150, is the printer
on routine. You must complete this and lines 2150 and 2160
before you can use these edit menu options. You can then edit
and list the incomplete program as often as you wish, just by
typing RUN and hitting RETURN. You can revise line 2150 to
read “LIST 1000, 1500 if you only need to list lines 1000
through 1500. When the program is complete and all bugs have
been eliminated, you can delete this portion and run the main
_program in a normal way.

One new and very useful routine is used in this subprogram, at
line 45. The command ON A GOTO means that for each value of A
(1, 2, or 3) the branch will be to line 60, 2160, or 2150. This com-
pact statement functions the same as three separate IF state-
ments of the form: IF A = 1 THEN 60.

51

4-3 GENERAL INSTRUCTIONS

Type the whole program as carefully as you can. If you have any
doubts about the accuracy of your typing, list the program on the
printer and compare it with the program printed in the book.
When you first run the program, choose option 1. You will be
asked to specify a name for the file so that you can recall this
particular file later. You can specify names for as many different
files as you wish, using either the same name or any different
name each time you run the program, thus creating many differ-
ent lists. Enter only one or two names to check out the program.
After the last name is entered, type QUIT and the disk storage
system should immediately start filing. Note that you are asked for
the first name, and then, in a second entry, the last name. The last
name is separated so that all items can be sorted in the alphabeti-
cal order of the last name.

20 TEXT : HOME : VTAB 10

25 PRINT "t RUN PROGRAM " : PRINT

30 PRINT "2 CLEAR TO EDIT " : PRINT

35 PRINT "3 PRINT PROGRAM LIST" : PRINT

40 HTAB 15 : INVERSE : PRINT "ONE DIGIT"; : NORMAL
. GET A$: A = VAL (A$)

45 ON A GOTO 60,2160,2150

60 REM <<< LISTER 3.0 >>>

70 TEXT

80 DIM A$(6,250)

100 D$ = CHR$ (4)}:A = 1 : PRINT =RRINF-DE'MON-C:O"

110 HOME : VTAB 5

115 PRINT DT$: PRINT

120 B=6:Y=C:X=1

125 IF DR = 1 THEN FLASH

130 PRINT "A TO ENTER NAMES ON LIST "

135 NORMAL

140 PRINT

145 IF DR <> 1 THEN FLASH

150 PRINT "B TO READ LIST NAMES ON SCREEN "

155 NORMAL

160 PRINT

170 PRINT "C TO PRINT ADDRESSES *
180 PRINT

190 PRINT "D TO PRINT ADDRESS LABEL "

52

200
210

220
230
240
250
260
265
270

280
290

300
310
320
330
340
350

355
360
370
380
385
390
400
410
420
430
435
440

450

460

470
480

483

PRINT

PRINT "E TO ENTER NAMES FOR ONE STREET AND
CITY "

PRINT "F TO REVISE A FILE " : PRINT

PRINT "G TO SAVE ON DISK "

PRINT : PRINT "H TO SORT "

PRINT

PRINT "I TO QUIT (AUTOMATIC SAVE) "

PRINT : PRINT "J TO CHANGE DATE "

PRINT : HTAB 10 : INVERSE : PRINT "LETTER?"; :
NORMAL : GET PI$

Pl = ASC (PI$) — 64

IF Pl <1 OR PI > 10 THEN PRINT CHRS$ (7) : GOTO
110

IFPl =7 THENJ = 0: GOTO 1130
IFPl = 9THENJ = 0: GOTO 1130
IF PI = 10 THEN GOSUB 2050 : GOTO 110

IF PI = 8 GOTO 1650

HOME : VTAB 10

IF DR = 1 GOTO 370 : REM DR= 1 AFTER DISK
HAS BEEN READ

IF DR = 2 THEN DR = 0: GOTO 370

INPUT "WHAT IS THE NAME OF THIS LIST? : " ; LN$
IF Pl = 5 GOTO 1550

IF Pl => 2 GOTO 750

REM <<< DATA ENTRY >>>

J=Y

J=J +1

IFY<JTHENY =J:C =Y

FORI = ATOB

HOME : VTAB 5
JD=J—-1:IFI>1THENJD = J

PRINT "#"JD" "A$(1,JD) + ""A$(2,JD) : HTAB 6 :
PRINT A$(3,JD) : HTAB 6 : PRINT A$(4,JD) : HTAB 6 :
PRINT A$(5,JD) : HTAB 6 : PRINT A$ (6,JD)
PRINT : PRINT "FOR "LN$" #"J":";

HTAB 20 : PRINT "ENTER "; : INVERSE : PRINT
"QUIT"; : NORMAL : PRINT " TO EXIT"

PRINT

PRINT "ENTER "; : INVERSE : PRINT "DROP"; :
NORMAL : PRINT " TO DROP NAME ABOVE "
PRINT

485

490
500
510
520
530
540
550
560
570
580
590
600
610
620
623
625
630
640
650
660

670

675

680

682

684

686

688

689

690

PRINT "ENTER "; : INVERSE : PRINT "LINE"; :

NORMAL : PRINT " TO GO BACK AND CHANGE " :

PRINT "PREVIOUS LINE"

PRINT : PRINT

ON | GOTO 510,530,550,570,620,625
PRINT "FIRST NAME? : "

GOTO 630

PRINT "LAST NAME? : "

GOTO 630

PRINT "STREET? : "

GOTO 650

IF Pl = 5 GOTO 600

PRINT "CITY, STATE, ZIP? : "
GOTO 630

A$(l,J) = CY$

GOTO 720

PRINT "PHONE? : "

GOTO 630

PRINT "NOTES? : "

PRINT : PRINT

IFPl = 5AND | = 3 GOTO 710
INPUT "ENTER DATA: " ;A$(l,J)

53

IF LEFT$ (A$(1,J),4) = "QUIT" THEN J=0rY =¥ —

1:C =Y :GOTO 1130

IF LEFTS$ (A$(l,J),4) = "DROP" THEN ¥ =0 1

=J—-1:1=1:GO0TO 430

IF LEFTS$ (A$(1,J),4) = "LINE" THEN A$(,J) ="":1 =1

—1:GOTO 2100

IF A$(4,J) = "E" THEN A$(4,J) = "ENGLEWOOD N.J.

07631 "

IF A$(4,J) = "N" THEN A$(4,J) = "NEW YORK CITY

N.Y. "

IF A$(4,J) = "S" THEN A$(4.J) = "ST. LOUIS
MISSOURI *

IF A$(4,J) = "T" THEN A$(4,J) = "TENAFLY N.J.
07670 "

IF RIGHTS (A$(2,J),1) = "F" THEN A$(2,J) = A$(2,J)

+ "AMILY"

IF RIGHTS (A$(3,J),1) = "S" THEN A$(3,J) = A$(3,))

+ "TREET"

IF RIGHTS (A$(3,J),1) = "R" THEN A$(3,J) = A$(3,J)

+ "OAD"

691

692

693

695

696

697

698
700

710
720
730
740
750
760

770
780
790
795
800
810
820
830
840
845
850
860
870
880
890
895

896
897
900

IF RIGHT$ (A$(3,J),1) = "A" THEN A$(3,J) = A$(3.J)
+ "VENUE"

IF RIGHTS (A$(3,J),1) = "P" THEN A$(3,J) = A$(3,J)
+ "LACE"

IF RIGHTS (A$(3,J),1) = "C" THEN A$(3,J) = A$(3.J)
+ "OURT"

IF LEFT$ (A$(5,J),1) = "A" THEN PH$ = "201-567-" :
A$(5,J) = PH$ + RIGHTS (A$(5,J),4)

IF LEFT$ (A$(5,J),1) = "B" THEN PH$ = "201-568-" :
A$(5,J) = PH$ + RIGHTS (A$(5,J),4)
IF LEFT$ (A$(5,J),1) = "C" THEN PHS$
A$(5,J) = PH$ + RIGHTS (A$(5,J),4)
IF LEN (A$(I,J)) = 0 THEN A$(Il,J) = "....."

IFPl = 5 AND | = 3 THEN A$(3,J) = A$(3,J) + "" +
ST$

PRINT

NEXT |

GOTO 400

REM <<< READ FROM DISK >>>

HOME : IF DR = 1 GOTO 860

DR = 1:VTAB 10 : HTAB 9 : PRINT "READING DATA
FROM DISK "

PRINT D$"OPEN ";LN$

PRINT D$"READ ";LN$

INPUT Y

INPUT DT$

B=6

FORJ=XTOY:FORI|=ATOB

INPUT A$(1,J)

NEXT |

NEXT J

cC=Y

PRINT D$'CLOSE ":NM$

IF Pl = 2 GOTO 895

IF Pl = 6 GOTO 1020

IF Pl > 2 GOTO 1280

NEXT J

HOME : VTAB 10 : INPUT "ENTER PAUSE LENGTH (0
TO 2000) ";PL

IF Pl = 6 THEN 910

C=Y:J=0

J=J+1

"201-569-" :

910
915
920
930
940
950
955
960
970
980
990
1000
1010
1020
1030
1035
1040
1050
1060
1070
1080

1090
1100
1110
1120
1130
1140

1150
1160
1170
1180
1190
1195
1200
1210
1220
1230
1240
1250
1260

55

FORI=ATOB

IF PL = 0 GOTO 1000

PRINT AS$(1,J);

IF1 = 1 GOTO 1620

PRINT

NEXT |

IF CF = 1 GOTO 1960

IF Pl = 6 GOTO 1070

FOR PAUSE = 1 TO PL : NEXT PAUSE
PRINT : PRINT

IF J <Y THEN 900

GOTO 110

REM <<< DATA REVISION >>>
HOME : VTAB 5

INPUT "WHICH FILE DO YOU WANT TO REVISE? "; J
PL =1

HOME : VTAB 10

GOTO 910

HOME : VTAB 5

PRINT

PRINT "WHICH LINE DO YOU WANT TO CHANGE? " :
GET |

PRINT

INPUT "TYPE NEW LINE: "; A$(l,J)

CF = 1 : HOME : VTAB 10 : GOTO 910
REM <<< WRITE TO DISK >>>
HOME

DR = 1: VTAB 10 : HTAB 10 : PRINT "SAVING DATA
ON DISK "

PRINT D$"OPEN "LN$

PRINT D$'DELETE "LN$

PRINT D$"OPEN "LN$

PRINT D$"WRITE "LN$

PRINT Y

PRINT DT$

J=J+1

FORI=ATOB

PRINT A$(l,J)

NEXT |

IFJ =< Y GOTO 1200

PRINT D$"CLOSE "LN$

IF PI = 9 THEN END

56

1270
1280
1290
1295
1300
1310
1320

1325
1330
1340
1350
1355
1360
1370
1375

© 1380

1385
1390
1395
1400
1410
1415
1420
1430
1440
1450

1460
1465
1467
1470
1473
1475

1476

1477

1478
1479

GOTO 110 \
REM <<< TO PRINT ADDRESS OR PHONE LIST >>>
C=Y

IF LEN (DT$) = 0 THEN GOSUB 2050

PRINT "ONE LIST (1) OR ALL (2) ? "

GET HL$

IF HL$ = "{" THEN INPUT "WHICH LIST "; HL : X =
HL:Y = HL

GOSUB 1330 : GOTO 1360 b R

PRINT CHRS (9)"132N"; =POKE-1913;0

PRINT CHR$ (27); GHRe«@ey "' ()
RETURN

B=6

POKE 36,50 : PRINT LN$"" + DT$: PRINT " "
J=0:IFHL>0THENJ =HL —1:HL =0 "
IFPl = 4 THEN B = 4

IF PI = 4 THEN 1470

J = J &

PRINT J; : POKE 36,5

FORI = ATOB

IF Pl = 4 GOTO 1430

JJ = 56

PRINT " "A$(1,J); : GOTO 1460

IF I = 1 THEN PRINT A$(1,J)"" + A$(2,J): | = 3
PRINT A$(l,J)

IF 1 = 5 THEN POKE 36,80 : PRINT "# "J"" + A$(6,J)
: GOTO 1480

NEXT |

PRINT " "

GOTO 1480
FORJ =1TOY
C=Y

PRINT A$(1,J) + "" + A$(2,J); : POKE 36,45 : PRINT
A$(1J + 1) + "" + A$(2J + 1); : POKE 36,90 :
PRINT A$(1,J + 2) + "" + A$(2,J + 2)

PRINT A$(3,J); : POKE 36,45 : PRINT A$(3,J + 1); :
POKE 36,90 : PRINT A$(3,J + 2)

PRINT A$(4,J); : POKE 36,45 : PRINT A$(4,J + 1); :
POKE 36,90 : PRINT A$(4,J +2)

J=J+2

PRINT " " PRINT " "

1480

1485
1490
1495
1497
1500
1510
1520
1530
1540
1550
1560

1570
1580
1590
1600

1610
1620
1630
1640
1650
1660
1670
1680
1720
1800
1810
1820
1830
1840
1850
1860
1880
1900
1910
1940
1950
1955
1960

57

REM PUT LINE SPACE HERE FOR DOUBLE SPACED

PRINTOUT

{F Pl = 4 THEN JJ = 28

IF INT (J / JJ) = J / JJ THEN GOSUB 1950

IE Pl = 3AND J < Y THEN 1390) P

IF Pl = 3 THEN PR#8-—GOTO-110~ TR (M [

NEXT J

X=1:¥%=C€C

POKE 54,240 : POKE 55,253

GOTO 110

REM <<< SET UP FIXED DATA ENTRIES >>>

HOME : VTAB 5

INPUT "WHAT STREET IS USED FOR ALL LISTINGS?
ST$

IF CL = 1 GOTO 390

PRINT : PRINT : PRINT

CL =1}

INPUT "WHAT CITY IS USED FOR ALL LISTINGS?
";CY$

GOTO 390

HTAB 30 : PRINT "LIST #"J;

GOTO 940

END

REM <<< SORT >>>

Z =1

HOME : VTAB 10

FORJ=ZTOY — 1

IF A$(2,J) > A$(2,J + 1) THEN 1820

NEXT J

GOTO 110 ‘

HOME : VTAB 10

FORI=1TOB

B$ = A$(l,J)

AS(I,J) = AS(,J + 1)

A$(l,J + 1) = BS

PRINT A$(l,J); : HTAB 20 : PRINT A$(l,J + 1)

NEXT |

Z =1

GOTO 1670

FOR JS = 1 TO 10 : PRINT " " : NEXT JS : RETURN

REM <<< REVISION OPTIONS >>>

PRINT " "

58

1970 PRINT "1 TO CHANGE ANOTHER LINE : "

1980 PRINT "2 TO CHANGE ANOTHER ITEM: "

1990 PRINT "3 TO RETURN TO MAIN MENU: "

1995 PRINT "4 TO CHANGE LAST ITEM NO "

2000 GET ClI

2010 ON CI GOTO 1070,1030,2040,2020

2015 GOTO 1070

2020 HOME : VTAB 10 : INPUT "ENTER NEW LAST ITEM
NO. "J

2030 Y = J: GOTO 110

2040 J =Y :GOTO 110

2045 REM <<< MISCELLANEQUS >>>

2050 HOME : VTAB 10

2060 INPUT "ENTER FULL DATE ";,DT$

2070 RETURN

2100 IF | = 0 THEN HOME : VTAB 10 : PRINT "THE LINE
FEATURE CAN BE USED " : PRINT "ONLY FROM
LINES 2 THROUGH 5 " : PRINT "ENTER D TO
CHANGE THE PREVIOUS ENTRY " : PRINT "ANY
OTHER KEY TO CONTINUE." : GET A$

2110 IFA$ ="D'THENY =Y —1:J=J - 1:1=1:
GOTO 420
2120 A$ =""

2130 GOTO 430

2140 REM <<< PRINT THIS LIST >>>
2150 GOSUB 1330 : LIST : END

2160 HOME : POKE 33,33 : END

To check whether the file works, select option 9 to end the program.
The disk drive operates automatically whenever this program is
ended to make sure that all data entered has been stored. To avoid
filing incorrect data when you want to abort the program, hit !
When the cursor reappears, call for a catalog listing and notice that a
new kind of file has been created, as identified by a ﬁ?qpa‘:eé&fﬁ’gcthe
file name you specified for this list. The ¥ mJans that the file is a fext
file, which is different from the program file you have been using up
to now. You cannot LIST a text file and can only retrieve it in a
special way, as done in the READ FROM DISK section of this pro-
gram. The text file just made should be at least twe secters.long if the
program has properly stored even one name. = ©

To check the operation further, run the program again, selecting
option 2 and using the same file name as before. All the names

59

you listed should appear on the screen. You may then choose any
other options to check out each of the features of the program.
Note that you should always recall all data stored on the disk, by
starting out with option 2 before adding other names to the file.
The singular exception is when first starting a file, and no data is
on the disk. Choosing option 2 in this instance will interrupt the
program with an OUT OF DATA error message.

4-4 PRELIMINARY PROGRAM FUNCTIONS

Lines 60 through 280 provide the initial data constants and estab-
lish the main menu that permits user selection of each of the
options of the program. The function of most of the constants will
become clear as you study the program details. Line 70 clears the
screen to the TEXT mode for the main body of the program, can-
celing POKE 33,33 and any prior graphics commands that may
have been in use. The function of D$ in line 100 needs special
explanation. The use of D$ permits insertion of CONTROL D
[CHR$(4)] wherever it is needed to initiate a disk function. It is
placed at the beginning so that it is available for both the writing
to disk and reading from disk routines that follow.

The-fourth _statement-in-line-1.00.is.a-D$-command,-which.is-used
to.arder.the display.of-disk-eommands;-inputs; and-outputs-onthe
screen:-This- command«‘ts placed-in- hne 100-so-that-yeu-will"be
mobsewe&all dlsﬁ rfunc’ncurns as yeu study the-operation of

=iffyou-want-to- avoid-this display, replace the command
- Note tha!’ this ¢ mmand has been-preceded
: LA AII B$ ommands must be prece‘d’ed

Note line 80, which introduces the dimension (DIM) statement.
The Apple computer normally allots space for ten numbers to
each variable. To change from ten to any other number, the
variable must be dimensioned with a DIM statement, as done
here. The variable A$(l,J) is dimensioned to allow 250 lists of six
items each. It is good programming to dimension all variables
including those less than ten so that only the required amount of
storage is used.

60

Line 280 converts PI$, which has no numerical significance as a
string, into the numerical value of the digits that the string would
ordinarily print out. You can observe this in a practical way by
temporarily inserting a line 285 STOP. When you run this program
with this line, the program will break at line 285, putting you in the
immediate execution mode. You can then print PI$ + PI$ and see
its value on the screen (1 & 1, or 11), and compare it with the value
of Pl + PI (1 + 1, or 2).

Line 290 prevents disrupting the program by accidentally entering
a wrong number. Anything less than one or more than ten causes
the bell to “beep’’ and sends the program back to the main menu.

4-5 DATA ENTRY

Lines 340 through 730 permit data entry. If option 1 is selected,
then PI$ = 1, making the value of PI$ and Pl both 1. If no data has
been read in from the disk, then DR = 0 and line 350 will be
passed, stopping the program at the INPUT statement of line 360.
Whatever name is assigned to the program at this point becomes
LN$. On Pl = 1 the program continues to line 390, where both J
and Y have initial values of 0. At line 400 J increases by 1, and at
line 410 Y takes on the value of J. As you will see later, Y is used
as a pointer, always carrying the highest value of J.

Line 420 allows | to go from 1 to 6, taking the values of A and B
assigned in lines 100 and 120. | is used to control the number of
data lines in the list (in this case six) and the number can be
changed by assigning a different value to B in line 120. You might,
for example, want to drop the sixth line (remarks) or add a seventh
line for classification codes to permit sorting your lists for differ-
ent purposes. It is easy to sort outputs this way by using an IF
statement to compare your code with an input defined string, IF
STRING = STRING THEN PRINT.

Lines 435 and 440 put the last entry, which is J — 1, or the partial
current entry J on the screen so that you can check for errors and
also keep track of your position. (If you do not see this now, do not
worry about it. Your understanding of the many complex interac-
tions of this program will have to grow slowly, and you can follow
this concept better on a future reading.) Line 450 prints a heading
for each listing to let you keep track of where you are in a long list.

61

It does this by printing the current value of J. Lines 510 to 620
print only one heading at a time for each value of | to show you
which data line you are to enter for each list. Each time a heading
is printed, the program is stopped by the INPUT statement of line
650, allowing you to enter the current value for A$(l,J). Study this
part of the program carefully, as it illustrates the principle of stor-
age by subscripted variables. Particularly, note how for each
value of J, | has six values. Thus the values of A$(l,J) in the first
listing will be A$(1,1), A$(2,1), A$(3,1), A$(4,1), A$(5,1) and
A$(6,1). The next list runs A$(1,2), A$(2,2) and so on. This assigns
a different variable for each line you enter, allowing up to 1500
different lines, which is 250 times 6.

You will understand the value of using subscripted variables better
if you recognize that each such variable provides a readily
addressable storage location. To address the name in any location
you need only order the Apple to print, for example, A$(1,250).

If you enter the word QUIT at any point, then line 660 will set J
back to 0, and Y back to the value of the last allowable entry. The
program then advances to line 1130, the WRITE TO DISK routine
so that all data is stored before any chance of accidental destruc-
tion arises. This is because the data stored in the subscripted
variables is retained only in the random-access memory (RAM) of
the Apple, and that data could be accidentally erased in a number
of ways. If you are running a long list, it is a good idea to store
groups of names on disk so that in the event of an accident you do
not have to retype any more than the group you have been cur-
rently processing.

The reason for the LEFT$ (A$(1,J),4) condition in line 660 is that
the word QUIT is only four letters long, but you might type an
additional space or hit some other character before hitting
. The conditional statement responds to only the first
four left-most letters, as defined by the format in line 660, and as
long as they equal QUIT the required condition is met.

A similar scheme is used in line 670 to make the program loop
back to line 430 and drop the previous entry. If you enter the word
DROP, Y and J are each set back by 1 and | is set to 1 so that the
next entry will wipe out the last made entry by rewriting it. To
delete a name, change line 2 to ZZZZ with the CHANGE routine
and then use SORT to place that entry at the end of the list where
you can drop it.

62

If no entry has been made for any given line and only
has been pressed, then AS$(l,J) will contain no letters (zero
length), meeting the condition of line 698. You might do this if, for
example, no phone number were to be listed. This causes the
special blank line insertion (.) to be printed on any blank line.
This feature was put in because it is easier to type than
to type five periods and then (L -

Similarly, lines 680 through 686 will print the city, state, and zip
code for your favorite city whenever you enter the appropriate
single character for that city name. My home town and other
selected cities are used for this sample, but you can change this
line for any places you like. You will find this feature a great time
saver if you use the cities most of your friends live in.

Line 688 will make a last name read “JONES FAMILY” if you type in
“JONES F’. The computer does this by examining the last letter of
the last name, and if it is an F, adding the AMILY. In the unlikely event
that you have a last name ending in F, you can prevent getting, for
example, the BIFFAMILY, by typing BIFF followed by a space.

Lines 689 through 693 allow you to type just the first letter for
street, avenue, etc., and let the program fill in the rest.

Lines 695 through 697 insert the three most common telephone
exchanges in my area, together with my area code. To use this
feature type A, B, or C and then the last four digits of the phone
number. The complete number will be generated.

Line 730 loops the program back to the beginning of this routine,
at line 400, after the last line of data (I = 6) for each listing has
been entered. This program will continue adding list items until
stopped by a QUIT entry or until the DIM limit of 250 is exceeded.
Do not exceed 250 names per file, or you will interrupt the pro-
gram with an error message and lose all recently typed data. If you
need more than 250 names, use several files. When you QUIT
entering data the program executes the WRITE TO DISK mode,
which is the next area to study.

4-6 WRITE TO DISK

Lines 1130 to 1270 store all previously entered data in the disk
operating system (DOS). The procedure WRITE TO DISK is

63

extremely simple to execute, but you must do each step in exactly
the right sequence to make it work. Line 1140 sets the flag DR to
1, indicating that the data now stored in the memory of the Apple
computer includes all data stored on the disk. The initial value of
DR is 0, and once it has been set to a value of 1, it does not return
to 0 unless all data in the memory of the Apple is also set to 0. As
you will see in the discussions of other parts of this program, the
value of 1 is used to keep the Apple from going into an unneeded
READ FROM DISK routine if the disk data is already in memory.

Line 1150 opens the active file (NM$), using the D$ command
(CONTROL D), which puts the system in the DOS mode. Line
1160 then deletes everything in the file, to clear the way for fresh
data. Line 1170 opens the file again and line 1180 commands
DOS to write all succeeding data into storage.

Line 1190 is extremely important. The value of pointer Y has been
previously set to a number corresponding to the last file number
(highest J) in step 410. In order to properly recover the stored
data, without getting an OUT OF DATA message, you must define
exactly how much data has been stored. That is done by storing
the value of Y, and since this value is required only once, step
1190 precedes the loop counting action that takes place between
steps 1200 and 1240.

LINE 1210 steps | through six values, exactly as done in statement
420 during DATA ENTRY. Line 1220 writes each value for A$(l,J)
into storage, in exactly the same sequence as originally done
when the data was entered. So long as J is less than Y the pro-
gram will keep looping from line 1200 to 1240, with a different
value for J each loop. When the last item of data previously
entered is stored, J will equal Y, and line 1250 will close the DOS.
If you leave this step out, you can invite all kinds of difficulties
_ when you try to run the program. Note that line 1250 includes the
file name (LN$). This is optional in a program such as this, where
only one file is active at a time. You can leave the file name out (as
done in line 850 of the READ FROM DISK routine) saving typing
time and storage space.

Line 1260 is included so that if the storage took place following a
QUIT command in option 9, the program will now end. If the stor-
age followed a QUIT command during option 1 or SAVE com-
mand in option 7, then line 1270 will return the program to the
main menu.

64

4-7 READ FROM DISK

Line 750 will bypass the READ FROM DISK section of the pro-
gram if data has already been stored in memory, as indicated by
DR equaling 1. This bypass will happen when the data is stored,
as previously discussed, or the bypass will happen when the data
is read from the disk because of step 760. Once the data has been
read it would be a waste of time to read the same data again. The
only time the stored data must be read is when starting to add
names to an existing list, which is normally done in conjunction
with option 2.

Line 770 opens the file, and line 780 sets DOS to read data from
the disk, just as if the data were coming from the keyboard. Line
790 INPUTS the previously stored value of Y, for reasons already
explained. Line 810 will cycle the read mode through all values of
J, from 1 through Y, and | from 1 to 6 (or any value of B you wish).
The action is similar to that in the WRITE TO DISK section, except
that you input all values of A$(l,J) in a read mode and save the
data in a write mode. Line 850 closes the DOS file and the next
three lines cause the program to branch as required to execute
whichever option has been picked. Note the relationship of lines
870 and 880. If Pl = 6, the program branches directly to line 1020;
otherwise, for any value between 3 and 5, the program jumps to
the print mode at line 1280.

If Pl equals 2, line 860 will cause a jump to line 895 that starts a
FOR-NEXT routine running through line 990 that prints each entry
on the screen. Line 970 holds the display on the screen while it
loops through 1 to 2000 or more operations, as defined by PL.
The value of PL is established by the INPUT statement at line 895.
If PL is set to 0, then line 915 will cause the program to skip past
the display mode entirely.

4-8 CHANGING EXISTING DATA

Changing data is achieved by inputting fresh data to the desired
AS$, identified by specific J and | subscripts. Line 1030 INPUTS the
value for J, and line 1050 routes the program back to line 910 to
print all six lines on the screen. At line 960 option 6 is recognized,
causing a jump to line 1070. This jump puts a blank space between
the list and the INPUT statement, which asks for a value of | in line

65

1080. With | and J both designated, the single line A$(l,J) is then
replaced by answering the INPUT statement of line 1100.

At this point in the program, let us add a few steps, and instead of
inserting them here, by using the renumbering routine to create
the space, let us use another technique. Line 1110 creates a jump
via the display routine of lines 910 through 955, at line 955 to line
1960, where there is room for the new steps that conclude at line
2010. These steps provide a sub menu permitting additional
changes or a return to the main menu. Even though this routine is
an afterthought, fit it into the program by jumping from line 1110,
adding the new steps, and then going to other program points, as
in line 2010. Although this technique is a useful expedient, it is not
good programming practice to jump around in illogical order and
lose sight of your main flow.

4-9 PRINTING OUT DATA

If Pl equals 2, 3, or 4, then the route is from the main menu to step
380, and from there to 750. If no data has been entered, the READ
FROM DISK routine will execute, and at line 860 (even if the read
mode was bypassed because PR equaled 1) the program will
jump to line 1280.

Line 1330 turns on the printer. Line 1340 sets the line length to
132 characters and also turns off the screen to avoid problems.
Thisseemmand.is-needed-only-with"some-printer.cards-and-(for
printer-slot..#-=1)-sheuld-be-ROKE--1913;0,-0r-POKE-1913;+-as
discussed-under-main- headmg 2-41. Line 1350 is the small print
command for the = ZS7=printer. For other printers, see
main heading 2-11. Thé“§mal| print size allows many characters to
a line.

Line 1360 resets B to its normal value of 6 if B has been set to a
lesser number following the execution of option 5. The value of B
determines how many lines will print out and permits elimination
of the lines containing the phone number and notes, when the
address label format is selected by option 5. In that case, line 1380
sets B to 4. Line 1370 prints the list name and current date at the
top of the list and then adds a blank space below the name.

Lines 1390 to 1400 set up the FOR-NEXT loops to print out the
listings. If Pl equals 4, there is a jump from line 1410 to 1415 where

66

a page length constant (JJ) is set to 56. This allows 56 lines to
print out. Then, line 1490 skips ten spaces creating top and bot-
tom page margins.

Lines 1430 through 1450 make the print format consist of three
separate lines. If Pl equals 3, then line 1420 PRINTS with a semi-
colon to avoid line feed and a blank space between the quotes to
separate the six strings that print consecutively on one line.

After the last J has been printed line 1520 turns the printer off and
line 1530 causes a return to the main menu.

4-10 DATA ENTRY FOR ALL ONE STREET

On option 5 line 370 causes a jump to line 1550. Line 1560 estab-
lishes a value for ST$, which is the street name, and line 1590
causes a jump to line 390 only if the city has been previously
selected, as indicated by a value of 1 for CL. If CL equals 0, CL is
now set to 1 at line 1590, and then the INPUT statement of line
1600 establishes CY$, which is the city name.

Line 390 starts the data input routine, which is now modified
because of the conditions just established. Line 570 causes a
jump past line 580 to line 600, which sets all line 4’s to CY$ with-
out any additional keyboard input. At line 500 it is only necessary
to supply the house number. The street name (ST$) is added in
line 700. Line 570 jumps past the INPUT statement for CY$.
Finally, line 700 changes the street line to the house number plus
a blank space and ST$.

When no more names are to be added for a given street, execute
a listing QUIT and return to the main menu. On the next execution
of option 5, line 1600 will be bypassed because CL is still 1 at line
1590. Thus a new street name can be added without reinserting
the city name. To change the city, execute an option 9 QUIT,
saving all data on disk. When you rerun the program all variables
will be set to zero, giving you a fresh start.

4-11 SORT

The sort routine is designed to illustrate the general techniques of
sorting, as it provides a tool for processing the lists generated by

67

this program. Because this routine has been designed to illustrate
the basic principles of sorting, it is an elementary example and
lacks the efficiency and speed of more refined programs.
Although this routine may take an hour or more to sort a long
scrambled list, it will do so effectively. Once you have learned how
sort routines work, you will be able to choose from among the
many better routines that are available and adapt them to your
own needs.

4-12 GENERAL DISCUSSION

Programmers use many different routines, but all programmers
follow the same general principles. Before analyzing the program
studying the fundamentals will be useful. The sort process com-
pares two items at a time and places one of them ahead of the
other, based on some rules established for the list. In this exam-
ple, the comparison is made on the last name of each person in
the list, and the names are then placed in alphabetical order. The
sort is done by a comparison such as line 1720.

If the comparison results in a decision to interchange the two
names, then one of them (called B for purposes of this illustration)
is transferred to a holding memory (B$ in this program) and name
A is then transferred to the former location of B. To complete the
transfer, name B then goes to the former location of A.

If that shell game was too much to follow, look at it this way. In
step 1 of the sample below, name 1 is Ball, name 2 is Adams. A
comparison shows these names are not in correct alphabetical
order, so in step 2 Ball is entered into B$. In step 3 Adams
replaces Ball as name 1. At this point, Adams is carried as both
name 1 and name 2, and Ball is B$. B$ replaces Adams as name 2,

STEP NAME 1 NAME 2 B$
1 BALL ADAMS -
2 BALL ADAMS BALL
3 ADAMS ADAMS BALL
4 ADAMS BALL BALL

68

in step 4, completing the transfer. Name 1 is Adams and name 2 is
Ball. By moving names one pair at a time, an entire list can be
jockeyed around until all names are in proper order. You will actu-
ally see something similar to the example in the box on the previ-
ous page flash by on the screen when you run this program:

4-13 TESTING LAST NAMES FOR PRECEDENCE

Selecting option 8 causes line 330 to direct the program to line
1650, starting the sort routine. Line 1680 starts the routine count-
ing from the first name (Z) to the last (Y). Line 1720 tests each
successive pair of names. If the first name in the pair A$(2,J) is
greater than the second A$(2, J + 1), then the two names are not
in correct sequence, and the program jumps to the sequence
inversion routine at line 1820. (You could, of course, use A$(1,J)
to sort on the first name.) If the sequence is correct, then line 1800
completes the loop back to 1830 and the next pair is tested. After
the last pair has been tested and there are no more next J’s for
line 1800, line 1810 branches back to the main menu.

4-14 PUTTING NAMES IN ORDER

If sorting starts with all names in order, then no sorting takes
place and the return to the main menu is almost immediate. If the
names are completely scrambled, requiring a large number of sort
operations, many minutes could go by before finishing.

Processing a long routine will give you an opportunity to observe
how the Apple computer purges its string memory from time to
time when that memory is filled to capacity. When a new name is
assigned to a given string variable such as A$(2,8), the Apple
does not clear the memory location but instead assigns the old
name to another location. When the space reserved for string
storage is filled, the Apple halts and takes time out to clear the
memory locations of those strings no longer needed. As you run a
long sort you will see the process stop after about 200 screen
displays flash by. The display then freezes for about a minute
while the garbage collection takes place. The actual sorting oper-
ation goes quickly, but the pauses for clearing occur frequently
and use up much time. For this reason LISTER has been limited to

69

only 250 names; more names than this would cause even more
frequent pauses of even longer length.

To return to our discussion of line 1820 for the case where a sort
is required, line 1820 clears the screen and starts a display ten
lines down to show what is taking place. (On a long sort, an empty
screen can be very boring; the screen message is good therapy
for we insecure humans.) Line 1830 starts a FOR-NEXT loop to
process all values of | for two names A$(1,J) and A$(l,J + 1) that
are to be swapped. Line 1840 holds an A$(l,J) in BS, for each pass
through the loop. Lines 1850 and 1860 complete the interchange
sequence, and line 1880 displays the names just sorted on the
screen.

Line 1900 steps the interchange through all six lines of the listing
and then moves the program to line 1910. This resets starting
number Z back to 1 so that the search can start from the begin-
ning of the list.

Line 1940 causes a loop back to the start of the sort routine to
examine the next item on the list. Note that line 1680 stops at one
less than Y. This is necessary because the last two names on the
listinclude both the next to the last name (Y — 1, or J) and the last
name (J + 1, or Y).

ol

Writing Your Own Programs

Chapter 5

5-1 GETTING STARTED

The programs you write will do the jobs you already know how to
do. Start with simple problems, comparable to those in Chapter 1,
and work your way up as you gain familiarity with the techniques
and gain confidence in your skills. As you grow, you will learn that
you have something unique; that is, the ability to generate pro-
grams that fit your needs better than anyone else can. Only you
really understand those needs.

However, before | leave you completely on your own, there are a
few general tips that should prove useful.

5-2 DEBUGGING

It is unusual to write a new program that works perfectly. Most
programs exhibit bugs, when first run, and debugging is an
essential skill for any programmer. Bugs will either cause an
unexpected result, which will be obvious, or make the program
break, printing an error message on the screen to tell you what
caused the break.

Unless the program is very short, it is a good idea to print out a
fresh LIST frequently as the program grows or changes are made
so that you can see all the steps at once. You can usually trace
the program route and discover what is wrong. As you gain expe-
rience, you will be able to locate bugs with increasing ease. There
are a number of special features built into the Apple computer to
make debugging easier; for example, the error message previ-
ously mentioned, and some of the other techniques discussed as
you worked through the programs earlier in this book.

1

72

5-3 TRACE

When you RUN a program in the TRACE mode, the Apple com-
puter will print out the line numbers of all program statements, in
the sequence the program runs, either on the screen or on paper.
Tracing the program lets you see whether the program is follow-
ing your expected sequence so that you can make any needed
corrections.

To initiate the trace mode, type TRACE before you RUN the pro-
gram or insert a numbered line with a TRACE command at the
program point you want the trace to start. When you are ready to
shut off the trace, type NOTRACE.

5-4 PRINT/PAUSE

Even more useful than trace is the addition of a line such as
1275 PRINT X" "Y" "A$(X); : GET 53; L B

Insert this line at any point in your program that you wish to
check. The program will stop at this point, with the value of all
designated variables printed on the screen or printer if you are in
that mode. When you press any key to GET @S, the program will
continue to run. This is especially useful to prove that the pro-
gram passed through a particular set of program lines and is bet-
ter than TRACE because it does not slow or interfere with normal
operation.

If you want to stop the program to make changes or print out
other variables, using the immediate execution mode, use
R . Using any other key would continue running the pro-
gram Revising a program line will clear your variables, and you
will not be able to continue running from the point you stopped.
Use RUN and to restart the program from a full stop;
use GOTO LINE XXX to plck up at an approprlate pomt (line
XXX), O CONT 3} ,

{

5-5 CONCLUSION

The LISTER program in Chapter 4 contains most of the elements
needed to develop programs for any application you may have.

73

Once you have mastered that program, understanding what was
done and why, you should be able to take off on your own, limited
only by your imagination.

Experiment with variations of the programs in this book, adapting
them freely to your own special needs. Particularly, adapt por-
tions of the LISTER program to your own applications, developing
as many practical variations as you can use.

Analyze the operations you have been doing with traditional
methods and then create Apple programs to do them faster, bet-
ter, and easier. As you do so, you will develop your programming
skills and, as with any other skills you have mastered, you will be
able to program with increasing ease and broader scope.

You will find many good books on the general techniques of pro-
gramming, both in BASIC and more sophisticated languages.
Now that you know how to converse in the dialect of the Apple
computer, you will be more at ease with other dialects and can
broaden your knowledge. Your first step from here will be to read
through the books furnished by Apple Computer, Inc. so that you
understand the finer points, which | have avoided repeating in this
book. If you have already read these books, reread them now.
Many things you may have missed before will now be clear.

Index

A D
Adding words, 25 Data
American Standard Code for Informa- changing, 64-65
tion Interchange, 20 entries, 15-17
ASCIl, 20 entry, 60-62
codes, 28-29 printing out, 65-66

statement, 15
Debugging, 71
B Deferred execution, 12
Basic programs, 9 Deleting
file names, 27
line numbers, 25

(o DIM, 59

Calculations, direct, 12-13 g:;id selculations, 512413
CALL-936, 12 ;
CATALOG, 18 ‘;‘L’}E'Lc’géeus'"g' i

disk; 25 ¢a read from, 64
Centronix 737, commands, 30-32 - 7
Changing write protecting, 26-27

. to, 62-63

file names, 27 DOS. 26

line numbers, 25 !
Clear, 9
Clearing screen, 14-15 E
Colon, 20
Comma spacing, 11 Epson MX-80, special commands, 35-
Computations, multiple, 44-46 36
Conditional statement, 43-44 Error messages, 11
Control, 10 ESC, 13

characters, hidden, 27-28

D, 59 F
Corrections, 23-25
Counting File(s)

using FOR-NEXT loops, 11-12 locking, 26

variables, 9-11 names, changing, 27

CTRL, 10 deleting, 27
Cursor, moving, 23-25 NOT FOUND, 27

75

76

File(s)—cont
recalling,27
text,58

FOR-NEXTloop,11

G

GET,21
GOSUB,21
GOTOstatement, 21

HOME, 11
HTAB, 31

Immediate execution, 12
INPUT statement, 17-18
Integer BASIC, 13

Interactive programming with strings,

18-21

Line
feed, 11
numbers, changing, 25
deleting, 25
LIST, 13
Listing, 39-41
LOCK, 26
Locking files, 26
Loops, FOR-NEXT, 11-12

M

Machine language, 30
Memory, storing data, 41-43
Multiple
computations, 44-46
reports, 46-47

NEW, 9
Numeric variable, 20

P

Paper Tiger, special commands, 34

POKE, 24
PRINT, 10
pause, 72
Printer commands, 29-30
Printing
out data, 65-66
tables, 37-38
Printouts, 14-15
Program(s)
description, 49-50
functions, preliminary, 59-60
saving, 17-18
Programming
tool, 50
with strings, 18-21
variables, 13-14
Pure cursor moves, 23

Q
QUIT, 51

R

RAM (Random Access Memory), 9

Read
from disk, 64
statement, 15
Recalling files, 27
REM, 14
Renumbering, 39-41
Reports, multiple, 46-47
REPT, 24
RESET, 10
RETURN, 9
Retype key, 24
Rounding, 38-39
RUN, 9

SAVE, 17
Saving
programs, 17-18
on disk, 13
Screen, clearing, 14-15
Semicolon, 11
SORT, 49, 66-67

Spacing, comma, 11

Storing data in memory, 41-43
String variables, 18
Subscripted variables, 41-43

T
Tables, printing, 37-38
TEXT, 24
file, 58
Trace, 72
U

UNLOCK, 26

v

Variable(s)
data entries, 15-17
programming with, 13-14
subscripted, 41-43
using, 9-11

w

Words, adding, 25
Write
protecting disk, 26-27
to disk, 62-63

77

TO THE READER

Sams Computer books cover Fundamentals — Programming — Interfacing —
Technology written to meet the needs of computer engineers, professionals,
scientists, technicians, students, educators, business owners, personal com-
puterists and home hobbyists.

Our Tradition is to meet your needs
and in so doing we invite you to tell us what

your needs and interests are by completing
the following:

1. 1 need books on the following topics:

2. | have the following Sams titles:

3. My occupation is:

Scientist, Engineer D P Professional

Personal computerist Business owner

Technician, Serviceman Computer store owner
Educator Home hobbyist

Student Other

Name (print)

Address

City State Zip

Mail to: Howard W. Sams & Co., Inc.
Marketing Dept. #CBS1/80
4300 W. 62nd St., P.O. Box 7092
Indianapolis, Indiana 46206 22026

